Gannett Fleming

13B3

LENOX CHINA
A DIVISION OF LENOX, INC.
POMONA, NEW JERSEY

POMONA DGW AND TCE
QUARTERLY GROUNDWATER
MONITORING REPORT
APRIL 2004 MONITORING ROUND

PROJECT #43838.001/.002 JUNE 2004

Office Location:

GANNETT FLEMING

202 Wall Street

Princeton, New Jersey 08540

Office Contacts:

James M. Barish, CPG

Robyn Berner

(609) 279-9140

2qtr04.doc

06/04

CONTENTS

1.0 INTRODUCTION	1
2.0 DETECTION MONITORING PROGRAM (DGW)	2
3.0 GAC TREATMENT SYSTEM MONITORING PROGRAM (DGW)	4
4.0 DEPTH TO WATER, WATER LEVEL ELEVATIONS, AND TREATMENT SYSTEM FLOW MONITORING (DGW)	6
4.1 Depth to Water and Water Level Elevations	6
4.2 Treatment System Flow Monitoring	6
5,0 TCE MONITORING PROGRAM (MOA)	7
5.1 Background	7
5.2 Field Procedures	
5.3 Groundwater Monitoring Results	8
6.0 SOLID WASTE MANAGEMENT UNIT NO. 2 AND AREA OF CONCERN GROUNDWATER MONITORING PROGRAM (MOA)	11
7.0 CLASSIFICATION EXCEPTION AREA / STATISTICAL ANALYSIS PROGRAM (MOA)	12
8.0 RESIDENTIAL WELL SAMPLING	14

FIGURES

<u>No.</u>	<u>Description</u>
1	Groundwater Flow Map – April 27, 2004
2	Groundwater Flow Map - April 27, 2004- Shallow Wells
3	Groundwater Flow Map - April 27, 2004- Deep Wells
4	Extent of Trichloroethene in Groundwater - April 27-29, 2004
5	Residential Well Sampling Location Map

APPENDICES

APPENDIX A - Groundwater Sampling Logs

APPENDIX B – Groundwater Contour Map Report Form

APPENDIX C - Laboratory Data Reports (Bound Separately)

1.0 INTRODUCTION

This report summarizes the results of the groundwater monitoring programs that satisfy the requirements outlined in Lenox's NJPDES Discharge to Groundwater (DGW) permit (permit number NJ0086487) and the Memorandum of Agreement (MOA) between Lenox and NJDEP. All groundwater monitoring and analytical procedures were conducted in accordance with the protocols outlined in the most recently revised Groundwater Sampling and Analysis Plan (GWSAP) and Supplemental Groundwater Sampling and Analysis Plan (SGWSAP) approved by NJDEP.

This report presents the DGW and MOA sampling program data in a single document. The report components are as follows:

- Detection Monitoring Program
- GAC Treatment System Monitoring Program
- Depth to Water and Water Level Elevation Measurements
- TCE Monitoring Program
- SWMU No. 2 and Area of Concern Monitoring Program
- Classification Exception Area/Statistical Analysis Program
- Residential Well Sampling

The first three items satisfy the DGW permit monitoring requirements while the remaining items fulfill the requirements of the MOA.

2.0 DETECTION MONITORING PROGRAM (DGW)

The quarterly detection monitoring program is covered by the GWSAP and consists of the following for the second quarter:

- Sample monitoring wells MW-1, MW-3, MW-4, MW-6, MW-9 and MW-10.
- All samples are analyzed for color and total and dissolved lead and zinc. Samples from MW-1 and MW-10 are also analyzed for total and dissolved iron, total suspended solids (TSS) and total dissolved solids (TDS).
- Specific conductivity, pH, temperature and dissolved oxygen are measured in the field during purging and prior to sample collection.

Table 1, Section 2 summarizes the results of the current sampling event. The full laboratory data report is provided in Appendix C. Tables 2 through 7 summarize historical sampling results for each well since 1996.

The April 2004 monitoring results are summarized below:

- Total lead concentrations ranged from less than the laboratory reporting limit of 3.0 micrograms per liter (μg/l) to 53.9 μg/l, with the highest concentration in the sample from MW-3. Dissolved lead concentrations ranged from less than the laboratory reporting limit of 3.0 μg/l to 47.5 μg/l, with the highest concentration in the sample from MW-3.
- Total zinc concentrations ranged from less than the laboratory reporting limit of 20 μg/l to 4,350 μg/l, with the highest concentration in the sample from MW-3. Dissolved zinc concentrations ranged from less than the laboratory reporting limit of 20 μg/l to 4,170 μg/l, with the highest concentration also in the sample from MW-3.
- Iron was analyzed only in the samples from MW-1 and MW-10. Total iron was detected at concentrations of 691 μg/l in MW-1 and 246 μg/l in MW-10. Dissolved iron was not

detected in either sample at concentrations exceeding the 100 µg/l laboratory reporting limit.

- TDS and TSS were analyzed only in the samples from MW-1 and MW-10. TDS concentrations were 66 milligrams per liter (mg/l) in MW-1 and 115 mg/l in MW-10. TSS concentrations were less than the laboratory reporting limit of 4.0 mg/l in MW-1 and 5.0 mg/l in MW-10.
- Color concentrations ranged from 5 color units (MW-6) to 50 color units (MW-1).

TABLE 1 SECTION 2

GROUNDWATER QUALITY DATA - APRIL 2004

							· · · · · · · · · · · · · · · · · · ·	MW-2		
Parameter	Units	MW-1	MW-3	MW-4	MW-6	MW-9	MW-10	(MW-10 Dup)	FB	TB
pH, Field	pH units	5.15	5.58	5.79	4:19	5.83	5.37	5.37	-	-
Specific Conductance	ms	0.090	0.440	0.250	0.152	0.252	0.153	0.153	-	- 1
Oxygen, Dissolved	mg/l	-	-	٠-	-	- ,	-	- 1	-	-
Temperature, Field	°C	10.1	13.5	13.9	14.1	15.5	15.2	15.2		-
Total Suspended Solids	mg/l	<4.0	-	÷	-	-	5.0	<4.0	<4.0	-
Total Dissolved Solids	mg/l	66	-	-	•	-	115	127	<10	
Ammonia-Nitrogen	mg/l	-	-	-		.	-	-	-	-
Color	CU units	50	15	20	5	. 10	30	30	<5	- 1
Sulfate	mg/l	-	-	-	-	-	-		-	-
Iron, Dissolved	μg/l	<100	-	-	-	· -	<100	<100	<100	-
Lead, Dissolved	μg/l	<3.0	47.5	11.3	<3.0	<3.0	<3.0	<3.0	<3.0	-
Sodium, Dissolved	μg/l	-	-	-	-	<u>-</u>	-	_	-	- '
Zinc, Dissolved	μg/l	<20	4,170	60.5	<20	<20	<20	<20	<20	- 1
Iron, Total	μg/l	691	-	-		_	246	217	<100	-
Lead, Total	μg/l	<3.0	53.9	13.7	<3.0	<3.0	<3.0	<3.0	<3.0	-
Sodium, Total	μg/l	-	-	-	-	<u>:</u>	-	-	-	-
Zinc, Total	μg/l	<20	4,350	68.3	<20	<20	<20	<20	<20	-
Volatile Organic Compounds			-			-		II.		
1,1-Dichloroethene	μg/l	< 0.43	_	<u> </u>	_	-	<0.43	<0.43	< 0.43	<0.43
Cis-1,2-Dichloroethene	μg/l	< 0.20	_	_	_	· -	0.26 J	0.33 J	<0.20	<0.20
Trans-1,2-Dichloroethene	μg/l	< 0.53	_	-	_	_	<0.53	<0.53	< 0.53	<0.53
Methylene Chloride	μg/l	< 0.64	-	_	_		<0.64	<0.64	< 0.64	<0.64
Trichloroethene (TCE)	μg/l	< 0.19	_	_	_	_	3.9	3.7	< 0.19	<0.19
Vinyl Chloride	μg/l	< 0.67	-	-	_		<0.67	<0.67	< 0.67	<0.67
Sum of Volatile Organic Compounds		<1.33	-	-	_	-	5.30	5.17	<1.33	<1.33

Notes:

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l), Zinc (36.7 µg/l) or TCE (1.0 µg/l).

⁻⁼ Not Analyzed <= Not Detected J = Estimated Value

TABLE 2 SECTION 2

						, , , , , , , , , , , , , , , , , , , 		Specific		Total	Total	Sum of Volatile	:	
		[Iron,	Lead,	Lead,	Oxygen,		Sodium,	Conductance		Dissolved	Suspended	Organic	Zinc,	Zinc,
ļ	Ammonia	Dissolved	Total	Dissolved	Dissolved	pН	Dissolved	@ 25 C	Sulfate	Solids	Solids	Compounds	Total	Dissolved
Sampling Date	(mg/l)	(ug/l)	(ug/l)	(ug/l)	(mg/l)	(pH units)	(ug/l)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)	(ug/l)
				"										
10/8/1996	-	< 100	7.0	< 3.0	11.80	5.38	-	66.7	-	175	38	< 0.20	535	79.0
1/14/1997	< 0.10	< 100	4.0	< 3.0	3.40	5.45	8,980	47.6	< 10	164	27	< 0.20	24.0	< 20
4/7/1997	-	< 100	3.0	< 3.0	16.80	5.29	· -	41.7	-	138	14	< 0.20	< 20	< 20
7/16/1997	-	< 100	11.0	< 3.0	3.10		-	18.8	-	<10	18	< 0.20	< 20	45.0
10/20/1997	-	130	< 3.0	< 3.0	1.70	5.40	-	16.7	•	94	49	< 0.20	< 20	30.0
1/19/1998 .	< 0.10	165	3.4	< 3.0	1.20	5.40	6,980	43.9	11.9	86	12	< 0.20	< 20	25.2
4/13/1998	-	134	< 3.0	< 3.0	2.70	4.92	-	60.1	-	90	9	< 0.20	< 20	< 20
7/6/1998	-	322	10.8	< 3.0	5.40	5.76	-	32.1	-	126	11	< 0.20	29.4	33.4
10/5/1998	-	438	3.0	< 3.0	0.00	5.10	-	40.3	-	71	88.	< 0.20	< 20	< 20
2/16/1999	< 0.10	< 100	< 3.0	< 3.0	7.66	6.00	24,200	25.0	18.5	124	7	< 0.20	< 20	23.6
4/12/1999	-	< 100	3.3	< 3.0	5.20	7.91	-	115	-	65	6	< 0.20	·< 20	< 20
7/12/1999	-	< 100	< 3.0	< 3.0	7.30	6.18	-	32.6	-	80	< 4	< 0.20	22.5	< 20
10/18/1999	-	< 100	3.6	< 3.0	8.90	5.20	-	121		77	< 4	< 0.20	30.2	< 20
1/18/2000	< 0.10	< 100	< 3.0	< 3.0	6.62	5.66	15,500	80.8	< 20	36	< 4	< 0.20	< 20	< 20
4/10/2000	÷	< 100	< 3.0	< 3.0	6.20	5.87	-	23.6	-	131	16	< 0.20	25.4	< 20
7/12/2000	-	< 100	< 3.0	< 3.0	7.10	6.53	-	155	-	117	< 4	< 0.66	< 20	< 20
10/17/2000	-	< 100	< 3.0 .	< 3.0	4.62	4.83	-	156	-	37	6	< 0.66	< 20	< 20
1/24/2001	< 0.10	< 100	< 3.0	< 3.0	4.68	4.69	17,900	160	< 20	101	< 4	< 0.89	< 20	< 20
4/18/2001	· -	< 100	3.7	< 3.0	7.79	5.55	-	60.0	-	89	7	0.56	21.3	< 20
7/23/2001	-	< 100	< 3.0	< 3.0	6.56	5.12	-	115	-	36	< 4	< 1.3	< 20	< 20
10/16/2001	-	< 100	< 3.0	4.1	9.42	5.30	-	195	-	96	5	< 1.3	24.2	< 20
1/23/2002	< 0.10	< 100	< 3.0	< 3.0	9.25	5.23	31,700	224	< 20	148	< 4	< 1.3	< 20	< 20
4/9/2002	-	< 100	< 3.0	< 3.0	-	4.98	-	289	-	124	< 4	< 1.3	< 20	21.0
7/19/2002	-	< 100	< 3.0	< 3.0	8.23	5.23	-	171	-	64	< 4	< 0.44	< 20	< 20
10/15/2002	-	114	3.3	3.8	8.64	4.82	-	189	-	83	< 4	< 0.60	< 20	< 20
1/30/2003	< 0.10	< 100	< 3.0	< 3.0	9.40	5.11	11,100	94	< 20	56	4	< 0.60	< 20	< 20
4/16/2003	-	< 100	3.6	< 3.0	10.70	5.45	-	83	-	59	10	< 1.33	< 20	< 20
7/23/2003	~	< 100	5.7	< 3.0	5.70	4.81	-	75	-	100	9	< 1.33	< 20	< 20
10/30/2003	- ,	< 100	< 3.0	< 3.0	7.40	4.80	-	87	-	71	< 4	< 1.33	< 20	< 20
1/22/2004	< 0.10	< 100	< 3.0	< 3.0	9.80	4.90	9,910	96	< 20	79	9	< 1.33	< 20	< 20
4/29/2004		<100	< 3.0 √	<3.0 v	<u> </u>	5.15	-	90	-	66 🗸	< 4 ✓	< 1.33	< 20 ×	<20 ×

⁻ Denotes Not Analyzed < Denotes Not Detected

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 ug/l) or Zinc (36.7 ug/l).

TABLE 3 SECTION 2

Sampling Date	Lead, Total (ug/l)	Lead, Dissolved (ug/l)	Oxygen, Dissolved (mg/l)	pH (pH units)	Sodium, Dissolved (ug/l)	Specific Conductance @ 25 C (umhos/cm)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Total Suspended Solids (mg/l)	Zinc, Total (ug/l)	Zinc, Dissolved (ug/l)
					(-8-)		(······································	(,6,1)	(45/1)	(46/1)
10/8/1996	87.0	21.4	9.70	5.84	<u>.</u>	248	_	_	_	4,580	4,540
1/14/1997	51.0	34.9	5.40	5.02	13,000	134	20.3	109	-	2,420	2,380
4/7/1997	111	< 3.0	12.50	5.47	-	211		-	_	4,480	4,800
7/19/1997	34.6	12.7	2.80	5.52	_	25.7	_	_	_	5,060	4,400
10/20/1997	37.0	31.0	2.40	5.74	_	252	-	-2	<u></u>	3,380	3,560
1/19/1998	50.5	26.9	7.90	5.77	13,800	434	25.5	154	-	2,820	2,990
4/13/1998	33.1	30.2	4.60	6.21	-	537	-	-	-	3,870	3,870
7/6/1998	34.1	26.9	3.10	6.06	-	590	-	_	•	3,530	3,500
10/5/1998	78.8	12.8 -	5.40	6.50	-	527	-	_	· <u>-</u>	3,500	3,340
1/11/1999	78.6	20.0	3.40	5.90	20,600	125	35.8	219		5,130	5,170
4/12/1999	47.0	25.2	9.00	8.16	-	24.5	-	-	· •	2,340	2,200
7/12/1999	55.9	22.7	19.00	7.55	_	5.2	-	-	-	4,260	4,370
10/18/1999	39.1	21.1	8.20	6.44	-	266	_	-	_	4,000	4,030
1/18/2000	72.7	16.6	1.64	6.95	21,100	189	45.2	154	< 4	4,240	4,440
4/10/2000	18.6	14.3	4.40	6.51	-	188	-	-	-	2,820	2,700
7/11/2000	13.2	12.7	4.80	7.18	_	284	_	_	-	4,130	4,100
10/17/2000	24.1	12.3	1.25	5.63	-	337	_	_	_	3,780	3,960
1/24/2001	64.2	10.6	2.82	5.68	15,500	238	26.7	151	21	2,720	2,720
4/18/2001	24.8	18.0	2.86	5.89	-	106		-	-	2,330	2,380
7/23/2001	11.6	9.1	1.92	5.78	_	309	-	_	_	3,480	3,230
10/16/2001	15.1	12.8	9.34	6.83	_	255	·-	_	_	2,290	2,230
1/23/2002	13.6	11.8	8.81	6.73	26,000	324	70.8	228	< 4	3,900	3,810
4/10/2002	12.2	11.2	_	6.66	-	567	-	-	_	4,290	4,340
7/18/2002	80.8	69.5	1.48	5.36	-	738	_	-	_	14,700	14,900
10/17/2002	20.2	21.4	6.80	5.21	_	466	_	-	<u>-</u>	8,580	8,560
1/31/2003	9.5	8.4	4.60	5.11	11,400	111	28.9	90	< 4	1,540	1,570
4/16/2003	117	116	5.30	5.32	-	1,050		-	_ ,	4,050	4,170
7/23/2003	69.0	44.6	-	5.31	-	392	-	_	_	3,810	3,840
10/29/2003	51.6	43.9	5.20	5.69	-	358	_	-	_ ;	5,030	5,810
1/22/2004	24.9	13.2	6.70	5.42	21,200	263	33.6	158	15	3,420	3,430
4/28/2004	53.9 ✓	47.5√	-	5.58		440	-	-	-	4,350 ✓	4,170

⁻ Denotes Not Analyzed

< Denotes Not Detected

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 ug/l) or Zinc (36.7 ug/l).

TABLE 4 SECTION 2

				·····		Specific		Total	Total		
	Lead,	Lead	Oxygen,		Sodium,	Conductance		Dissolved	Suspended	Zinc,	Zinc,
	Total	Dissolved	Dissolved	pН	Dissolved	@ 25 C	Sulfate	Solids	Solids	Total	Dissolved
Sampling Date	(ug/l)	(ug/l)	(mg/l)	(pH units)	(ug/l)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)
•											-
10/8/1996	< 3.0	< 3.0	7.30	4.98	-	173	-	-	-	606	481
1/14/1997	< 3.0	< 3.0	6.10	4.75	14,000	152	55.7	140	<u>.</u> -	< 20	24.0
4/7/1997	<.3.0	< 3.0	20.60	5.74	-	150	-	-	-	< 20	< 20
7/16/1997	< 3.0	< 3.0	2.50	5.52	-	471	- ,	-	-	43.0	32.0
10/20/1997	3.0	< 3.0	5.00	5.98	-	304		-	-	23.0	29.0
1/19/1998	3.9	< 3.0	4.40	6.06	14,400	460	61.7	164	-	< 20	< 20
4/13/1998	< 3.0	< 3.0	2.30	5.72	-	455	-	-	-	< 20	< 20 -
7/6/1998	3.7	3.3	2.50	6.34	-	512	-	-	-	22.9	26.6
10/5/1998	4.4	< 3.0	5.10	6.16	-	462	-	-	-	24.8	30.7
1/11/1999	3.0	3.6	4.27	7.20	30,100	225	285	499	-	23.9	38.9
4/12/1999	< 3.0	3.4	3.40	8.12	-	8.08	-	•	-	58.3	51.7
7/12/1999	< 3.0	< 3.0	16.50	7.24	-	3.81	-	-	-	54.2	38.9
10/18/1999	3.8	< 3.0	7.00	5.94	-	413	-	-		101	82.2
1/18/2000	< 3.0	3.6	7.96	6.48	21,000	339	210	302	< 4	158	155
4/10/2000	< 3.0	< 3.0	6.70	6.92	-	397	-	-	-	32.5	128
7/11/2000	3.0	4.6	7.20	7.00	-	346	-	-	-	100	116
10/17/2000	< 3.0	3.5	5.19	5.64	-	344	-	-	-	86.5	83.5
1/24/2001	10.6	8.5	8.35	5.82	17,800	384	127	257	< 4	70.8	72.1
4/18/2001	9.2	7.3	6.40	6.04	-	199	-	-	-	94.6	92.6
7/23/2001	8.3	8.0	7.10	5.79	-	240	-	-	-	54.0	66.6
10/16/2001	6.4	7.5	7.55	5.81	-	206	-		-	87.5	80.2
1/23/2002	6.3	6.8	8.52	5.44	14,000	204	70.5	150	< 4	62.1	63.5
4/9/2002	9.2	8.9	-	5.68		468	-	-	-	116	117
7/18/2002	7.2	8.9	7.57	6.76	-	255	_	-	-	102	109
10/15/2002	8.7	10.0	7.10	5.19	_	277	-	-	-	94.1	92.1
1/31/2003	11.4	6.9	7.90	5.76	12,100	169	67.6	141	12	81.9	74.4
4/16/2003	12.1	8.5	7.20	5.98	, -	206	-	-	-	81.4	74.6
7/23/2003	6.9	4.1	-	5.73	_	225	-	-	-	87.5	84.4
10/30/2003	26.7	24.9	4.80	5.40	_	348	-	· _	-	133	127
1/22/2004	5.9	3.8	9.10	5.73	14,800	221	69.0	161	6	63.0	66.2
4/29/2004	13.7 ✓	11.3	-	5.79	-	250	-	-	_	68.3 🗸	60.5 🗸

⁻ Denotes Not Analyzed < Denotes Not Detected

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 ug/l) or Zinc (36.7 ug/l).

TABLE 5 SECTION 2

				·	-	Specific		Total	Total		
	Lead,	Lead,	Oxygen,		Sodium,	Conductance		Dissolved	Suspended	Zinc,	Zinc,
	Total	Dissolved	Dissolved	pН	Dissolved	@ 25 C	Sulfate	Solids	Solids	Total	Dissolved
Sampling Date	(ug/l)	(ug/l)	(mg/l)	(pH units)	(ug/l)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)
			, , , , , , , , , , , , , , , , , , ,		· · ·	•	;	 , <u>-</u>			
10/8/1996	< 3.0	< 3.0	6.50	4.13	-	172	-	. -	-	265	219
1/14/1997	< 3.0	< 3.0	6.00	4.63	15,400	149	-	99	-	26.0	33.0
4/7/1997	< 3.0	< 3.0	16.20	4.08	-	162	-	-	- ,	< 20	24.0
7/16/1997	< 3.0	< 3.0	5.30	3.87		189	-	- '	-	23.9	29.5
10/20/1997	< 3.0	< 3.0	7.60	4.27	-	231	-	-	-	23.0	23.0
1/19/1998	4.0	3.4	17.50	4.44	25,100	441	57.2	111	-	22.8	29.6
4/13/1998	< 3.0	< 3.0	2.50	5.94	-	501	-	-	-	< 20	< 20
7/6/1998	< 3.0	< 3.0	2.80	4.94	-	465	-	-	-	25.5	< 20
10/5/1998	< 3.0	< 3.0	2.20	4.96	-	459	-	-	-	30.9	22.3
1/11/1999	< 3.0	< 3.0	2.99	5.20	25,500	75	92.2	172	-	< 0.02	22.2
4/12/1999	6.5	3.2	10.20	7.09	-	.25	-	-	-	20.0	23.5
7/12/1999	< 3.0	< 3.0	3.80	6.57	-	179	-	- `	-	< 20	22.0
10/18/1999	< 3.0	< 3.0	4.30	4.56	-	193	-	-	-	21.1	< 20
1/18/2000	< 3.0	< 3.0	4.22	5.10	11,400	103	59.0	82	< 4.0	< 20	< 20
4/10/2000	< 3.0	< 3.0	4.10	5.09	-	27.1	-	-	· _	20.8	42.0
7/12/2000	< 3.0	< 3.0	6.40	6.02	-	230	-	-	-	< 20	< 20
10/17/2000	< 3.0	< 3.0	4.72	4.21	-	224	-	~	-	< 20	< 20
1/24/2001	< 3.0	< 3.0	4.03	4.22	60,200	134	47.1	114	< 4.0	< 20	< 20
4/18/2001	< 3.0	< 3.0	4.43	4.43	-	92	· +	-	-	< 20	20.7
7/23/2001	< 3.0	< 3.0	4.25	4.31	-	152	-	_	-	< 20	< 20
10/16/2001	3.0	< 3.0	8.46	4.46	_	200	-	_ -	<u>.</u>	< 20	< 20
1/23/2002	< 3.0	< 3.0	9.11	4.56	11,000	169	63.7	120	< 4.0	< 20	22.0
4/9/2002	< 3.0	< 3.0		4.06	-	212	-	-	-	< 20	< 20
7/18/2002	< 3.0	< 3.0	7.94	4.58	-	181	-	-	<i>'</i> -	< 20	< 20
10/15/2002	< 3.0	< 3.0	4.76	4.14	-	249	-	_	-	< 20	< 20
1/30/2003	5.0	< 3.0	7.00	4.26	75,700	107	52.0	61	< 4.0	< 20	< 20
4/16/2003	< 3.0	< 3.0	8.30	4.21	-	167	-	-	-	< 20	< 20
7/24/2003	< 3.0	< 3.0	-	4.31	_	180	-		-	< 20	< 20
10/29/2003	< 3.0	< 3.0	4.70	4.15	-	186	-	-		< 20	< 20
1/22/2004	< 3.0	< 3.0	8.20	3.87	10,300	141	45.5	97	< 4.0	< 20	< 20
4/29/2004	<3.0✓	<3.0 ✓	-	4.19	, -	152	-	-	-	<20 ~	<20~

⁻ Denotes Not Analyzed < Denotes Not Detected

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Zinc (36.7 ug/l).

TABLE 6 SECTION 2

	· 					··	Specific		Total	Total		
		Lead,	Lead,	Oxygen,		Sodium,	Conductance		Dissolved	Suspended	Zinc,	Zinc,
	Ammonia	Total	Dissolved	Dissolved	pН	Dissolved	@ 25 C	Sulfate	Solids	Solids	Total	Dissolved
Sampling Date	(mg/l)	(ug/l)	(ug/l)	(mg/l)	(pH units)	(ug/l)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)
												
10/8/1996	-	< 3.0	< 3.0	6.80	6.21	-	397	-	-	-	200	204
1/14/1997	1.4	< 3.0	< 3.0	3.50	5.40	60,600	334	120	383	- ·	< 20	21.3
4/7/1997	-	< 3.0	< 3.0	8.90	6.17	-	293	-	-	-	< 20	21.2
7/16/1997	-	< 3.0	< 3.0	1.00	6.14	-	407	-	-	-	< 20	< 20
10/20/1997	· -	< 3.0	< 3.0	4.30	6.45	-	397	· •	-	· -	< 20	< 20
1/19/1998	1.2	< 3.0	< 3.0	20.80	6.93	56,500	806	111	304	-	< 20	< 20
4/13/1998	· -	< 3.0	< 3.0	1.80	6.69	-	605	-	-	-	< 20	< 20
7/6/1998	-	3.4	< 3.0	0.80	6.62	-	960	-	-	-	< 20	40.6
10/5/1998	-	< 3.0	< 3.0	0.80	6.84	-	987	-	-	-	< 20	< 20
2/16/1999	0.93	< 3.0	< 3.0	0.53	5.90	54,200	200	93.0	292	-	< 20	< 20
4/12/1999	-	< 3.0	< 3.0	0.10	8.24	-	26.3	-	-	-	< 20	< 20
7/12/1999	-	< 3.0	< 3.0	2.40	7.59		5.68	-	-	-	< 20	< 20
10/18/1999	-	< 3.0	< 3.0	0.70	6.62	-	544	-	-	- .	< 20	< 20
1/18/2000	0.67	< 3.0	< 3.0	1.06	7.35	93,000	420	141	307	< 4	< 20	< 20
4/10/2000	-	< 3.0	< 3.0	1.60	7.32	-	425	-		-	25.7	26.2
7/11/2000	-	< 3.0	< 3.0	2.20	7.77	-	408	<u>-</u> ·	-	-	< 20	< 20
10/17/2000	-	< 3.0	< 3.0	1.16	6.33	-	433	- .	· <u>-</u>	-	< 20	< 20
1/24/2001	0.22	< 3.0	< 3.0	0.71	5.71	40,100	325	58.7	220	< 4	< 20	< 20
4/18/2001	-	< 3.0	< 3.0	0.00	6.69	-	217	-	-	-	< 20	< 20
7/23/2001	-	< 3.0	< 3.0	0.65	6.56	_	464	-	-	-	< 20	< 20
10/16/2001	-	< 3.0	< 3.0	0.96	6.99	-	359	-	-	-	< 20	< 20
1/23/2002	0.22	< 3.0	< 3.0	2.38	5.94	42,000	265	51.6	189	4.0	< 20	< 20
4/9/2002	- ,	< 3.0	< 3.0	_	5.12	_	235	-	-	-	< 20	< 20
7/18/2002	-	< 3.0	< 3.0	0.36	6.12	-	393 (-	_	-	< 20	< 20
10/17/2002	. -	< 3.0	< 3.0	1.84	5.64	-	397	-	-	-	< 20	< 20
1/31/2003	0.17	< 3.0	< 3.0	1.50	6.09	51,400	300	80.8	242	< 4	< 20	< 20
4/16/2003	_	< 3.0	< 3.0	3.10	6.00	-	235	-	-	-	< 20	< 20
7/23/2003	-	< 3.0	< 3.0	-	5.79	-	276		-	-	< 20	< 20
10/29/2003	-	< 3.0	< 3.0	2.70	5.80	-	245	-	_	-	< 20	< 20
1/22/2004	0.18	< 3.0	< 3.0	2.90	5.53	44,300	286	55.4	199	< 4	< 20	< 20
4/29/2004		<3.0 ✓	<3.0✓	<u>-</u>	5.83	- -	252	-			<20∽	<20~

⁻ Denotes Not Analyzed < Denotes Not Detected

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Zinc (36.7 ug/l).

TABLE 7 SECTION 2

	T	T 4	T 4	0		0-4:	Specific		Total	Total	Sum of Volatile	Zina	Zinc,
	Iron,	Lead,	Lead,	Oxygen,		Sodium,	Conductance	C 1C /	Dissolved	Suspended	Organic	Zinc,	
	Dissolved	Total	Dissolved	Dissolved	pН	Dissolved	@ 25 C	Sulfate	Solids	Solids	Compounds	Total	Dissolved
Sampling Date	(ug/l)	(ug/l)	(ug/l)	(mg/l)	(pH units)	(ug/l)	(umhos/cm)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)	(ug/l)
10/8/1996	< 100	< 3.0	< 3.0	1.80	4.10	-	302	-	247	< 4	29.4	195	264
1/14/1997	< 100	18.0	< 3.0	4.40	4.07	39,200	288	94.6	262	4	17.8	29.3	20.3
4/7/1997	< 100	9.0	8.0	10.50	5.29	-	279	-	229	-	33.3	< 20	< 20
7/16/1997	-	3.0	< 3.0	3.80	5.15	-	290	-	-		· -	< 20	< 20
10/21/1997	640	< 3.0	< 3.0	4.80	5.61	-	316	-	228	8	-	< 20	< 20
1/19/1998	< 100	3.2	3.4	6.90	5.87	43,400	852	77.8	239	17	27.0	< 20	< 20
4/14/1998	< 100	3.2	< 3.0	2.10	6.10	-	722	-	200 ,	< 4	34.0	< 20	< 20
7/6/1998	652	< 3.0	< 3.0	2.90	5.90	-	658		276	< 4	22.9	31.5	44.2
10/5/1998	<i>5</i> 38	< 3.0	< 3.0	2.90	5.85	-	715	-	222	14	13.3	< 20	< 20
1/11/1999	< 100	< 3.0	< 3.0	3.14	5.70	37,000	175	56.8	247	< 4	28.3	23.2	< 20
4/12/1999	< 100	< 3.0	9.1	5.90	7.38	-	27.2	· -	139	7	9.3	< 20	< 20
7/12/1999	< 100	< 3.0	< 3.0	14.40	7.48	-	7.5	-	175	< 4	13.3	< 20	22.8
10/18/1999	< 100	< 3.0	< 3.0	1.90	5.60	-	283	-	187	< 4	14.0	< 20	< 20
1/18/2000	< 100	< 3.0	< 3.0	3.51	6.25	30,700	198	66.3	171	< 4	11.1	< 20	< 20
4/10/2000	< 100	3.2	< 3.0	3.80	6.37	-	200	-	141	12	8.3	< 20	< 20
7/12/2000	< 100	< 3.0	< 3.0	5.00	7.13	-	253	-	144	< 4	8.72	< 20	< 20
10/17/2000	< 100	< 3.0	< 3.0	0.97	5.28	-	336	-	183	< 4	6.5	< 20	< 20
1/24/2001	< 100	< 3.0	< 3.0	1.42	5.33	34,800	356	86.1	229	< 4	14.4	< 20	< 20
4/18/2001	< 100	< 3.0	< 3.0	0.33	5.79	-	201	-	196	< 4	13.07	< 20	< 20
7/23/2001	< 100	< 3.0	< 3.0	0.77	5.59	-	371	-	210	< 4	13.8	< 20	< 20
10/16/2001	< 100	< 3.0	< 3.0	7.26	6.14	-	352	_	231	< 4	11.9	< 20	< 20
1/23/2002	< 100	< 3.0	< 3.0	7.43	6.32	38,400	320	79.2	256	< 4	2.6	< 20	< 20
4/9/2002	< 100	< 3.0	< 3.0	_	5.36	-	529	-	257	< 4	8.6	< 20	< 20
7/18/2002	< 100	< 3.0	< 3.0	6.49	6.13	-	341	- ,	217	< 4	7.2	< 20	< 20
10/15/2002	< 100	3.9	< 3.0	2.65	5.22	-	311	-	165	< 4	7.5	< 20	< 20
1/30/2003	< 100	< 3.0	< 3.0	6.00	5.37	20,900	132	42.7	122	15	4.4	< 20	< 20
4/16/2003	< 100	8.1	< 3.0	3.20	5.56	-	94	-	155	50	< 1.33	< 20	< 20
7/24/2003	< 100	< 3.0	< 3.0	-	5.39	-	132	_	95	11	< 1.33	< 20	< 20
10/29/2003	< 100	4.3	< 3.0	2.10	5.44	-	229		173	< 4	7.04	< 20	< 20
1/22/2004	< 100	6.0	< 3.0	8.10	5.24	18,700	122	28.7	182	96	4.24	< 20	< 20
4/29/2004	<100	<3.0✓	<3.0 ✓	-	5.37		153	_	115	.5 ~	5.30	<20√	<20 🖊

⁻ Denotes Not Analyzed < Denotes Not Detected

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 ug/l) or Zinc (36.7 ug/l).

DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

CN 029 Trenton, New Jersey 08625-029

SAMPLE COLLECTION AND PRESERVATION FORM

(To be completed by sampling crew)

BAC	KGROUND		
1)	Facility Name: Lenox China		
2)	NJPDES Number: NJ0086487		
3)	Facility Address: Tilton Road, P	omona, NJ 08240	
	,		
4)	Owner's Name: Lenox China	·	
5)	Owner's Address: Tilton Road, P	omona, NJ 08240	
SAM	PLING PLAN		•
6)	Has a sampling and analysis pl stipulated under N.J.A.C. 7:14 Yes X or No	-	this facility as
7)	If yes, has the sampling plan Yes X or No	been approved by the D	epartment?
8)	If the sampling plan has not b with these submitted forms.	een submitted to the D	epartment, attacl
SAMI	PLE COLLECTION		
9)	Sample Date/Time: 04/27/04 - 04/29/0		
10)	Sampling Personnel(Name/Title)	Affiliation	Phone
	Robyn Berner, Hydrogeologist	Gannett Fleming, Inc.	609-279-9140
	Suzy Kelly, Environmental Engineer	Gannett Fleming, Inc.	609-279-9140

11)	Weather conditions at the time of sampling: Sunny, 50 degrees F
-	
12)	Is there a designated level of protection, and if so, indicate: $A = B = C = C$ or $D = X = C$
STA	FIC WATER LEVEL MEASUREMENT AND WELL EVACUATION
13)	What method was utilized to determine the static water level? Electrical (m-scope) X Stainless Steel Tape Sonic or Other (explain)
14)	Measuring Device Precise to: 0.01 feet
15)	Model Number: 101 Manufacturer: Solinst
16)	Was the water level indicator deconned between wells? Yes X or No
17)	Describe the decontamination procedure: <u>Deionized water rinse</u> , wipe with paper towel, final deionized water rinse, air dry
18)	Wells are to be purged three to five times prior to sampling. If wells are not purged as stated above, explain and justify the exact purge method used. N/A
19)	Method used for well evacuation: Pump_X or Bailer
20)	If bailed to evacuate, what are the dimensions of the bailer? N/A
21)	What is the volume capacity of the bailer? N/A
22)	Pump Type: Submersible Bladder Gas Piston Gas Displacement or Other X Explain: Peristaltic Pump
23)	Pump Model Number / Flow Rate: Randolph Pump Model 750/1-6 gpm
24)	Pump manufacturer: Randolph-Austin
25)	Describe decontamination method used to clean pump between wells: None - A new piece of tubing was used at each monitoring well

26)				_	_				-	rator Engine_		_
27)		es,	fiel		tri	p bla	d in th			le as th	ne samp	ole
28)	Refer wells						t for v	olume c	apaci	ties fo	r vario	ous
	•		Cas	ing D	iame	ter		G	allon	s/Linear	r Foot	
			<u> </u>		"					0.16		
					"			•		0.65		
		1		6	ri .					1.47		
				8	"					2.61		
29)	Compl	ete	the	below	cha	rt re	garding	evacua	tion	measure	ments.	
	Pleas	e no	te t	he fo	llow	ing a	bbrevia	tions:				
	TOC=e	leva	tion	of t	op o	f cas	ing; TD	W=total	dept	h of wel	ll from	ı
	from top of casing; DTW=distance to water from top of casing; # of bail vols=number of bail volumes. TOC, DTW, and TDW											
	# of	bail	vol	s=num	ber	of ba	il volu	mes. T	OC, D	TW, and	TDW	
	Shoul	d be	mea	sured	and	/or c	alculat	ed to t	he ne	arest 0.	.01 foc	ot.
×	${\tt Also}$	note	tha	t if	a me	chani	cal pum	p is us	ed fo	r purgir	ıg,	
•	indic	ate	the	total	min	utes	of pump	ing tim	e bel	ow. If	a bail	er 🔻
	is us	ed f	or p	urgin	g, i	ndica	te the	total n	umber	of bail	l volum	es.
	Attac	h ad	diti	onal	shee	ts if	necess	ary.				
					SE	E TAB	LE QAQC	1 ON PAC	E 3A			
								,			•	
	Permit					gal.	Amount	Amount	# of		Time	Time
No./Ov		TOC	DTW	TOC-	TDW	1 '	of H2O	of H2O	Bail Vols	pumping time	purge	Sample Col-
Well 1	NO.			DTW	<u> </u>	Lin. ft.	Casing	Purged	VOIS	i cruie	comp- lete	lected
						1	cabing	<u> </u>	<u> </u>		1000	10000
											ļ	
		<u> </u>										ļ. ———
					ľ							ļ`
							<u> </u>					
											ı	
						-						
								•			•	

Table QAQC1 State of New Jersey Department of Environmental Protection Division of Water Resources Groundwater Sampling Data Collected April 28-29, 2004

Well Permit Number	Owners Well Number	TOC (Feet)	DTW (Feet)	TOC-DTW (Feet)	TDW (Feet)	Gallons per linear foot	Amount of Water in Casing (gallons)	Amount of Water Purged (gallons)	Number of Bail Volumes	Minutes pumping time	Time purge completed	Time sample collected
										,		
36-03025-2	MW-1	69.28	8.43	60.85	29.75	0.65	13.9	42	-	13	9:07	9:07
36-03027-9	MW-3	67.09	7.16	59.93	30.40	0.65	15.1	46	-	15	15:09	15:09
36-03119-4	MW-4	66.98	4.70	62.28	26.80	0.65	14.4	44	- •	14	9:34	9:34
36-02913-0	MW-5	64.17	-	-	17.95	-	-	Not Sampled	-	· .	-	-
36-03270-1	MW-6	65.08	5.97	59.11	30.75	0.65	16.1	- 50	- -	14	10:21	10:21
36-07160-9	MW-9	69.51	10.08	59.43	31.15	0.65	13.7	42	-	13	9:54	9:54
36-07161-7	MW-10	63.51	4.55	58.96	29.30	0.65	16.1	50	-	14	10:43	10:43

SAMPLE COLLECTION AND PRESERVATION

30)	Matrices Sampled: Nonitoring Woll V
	Aqueous: Potable Well Monitoring WellX
	Surface Water Leachate Other Nonaqueous: Soil Sediment Other
	Nonaqueous. borr bourmens
31)	Dedicated Hose: Yes X or No
32)	Hose Construction: PVC Teflon Tygon
	ButylOtherX Explain: Drinking water grade polyethylene
33)	Sample Collection: (Time of collection for each well/sample should be indicated on the back of this page) See table QAQC1 on page 3A A) Bailer-construction: Teflon Stainless Steel PVC HDPE X
	B) Beacon Bomb Sampler Size:oz.
	C) Other Explain:
34)	Lines used to lower bailer: Stainless Steel Other 100% poly
35)	Are dedicated bailers used for each well? Yes X or No
36)	Are bailers: Laboratory cleaned Laboratory Name
	Field Cleaned Describe method:
	Disposable bailers used only once then discarded.
37)	Prior to use, are bailers, sample bottles, hoses, etc. Kept clean i.e., not placed in direct contact with ground, etc.: Yes_X or No
38)	Are sample bottles supplied by laboratory? Yes X or No
39)	Are sample preservation instructions supplied by laboratory? Yes X or No
40)	Are sample preservatives supplied by laboratory? Yes X or No

41) Sample Preservation:

Constituent	Teflon top in contact with sample	Head Space	Refrig- erated	Acidified	Alkanized	Bottles
Volatile Organics	Yes	No	Yes	Yes	N/A	N/A
TOX	N/A '	N/A	N/A	N/A	N/A	N/A
Extractable Organics	N/A	N/A	N/A	N/A	N/A	N/A_
Metals	N/A	N/A	Yes	Yes	N/A	N/A
Cyanide	N/A	N/A	N/A	N/A	N/A	N/A
Phenols	N/A	N/A	N/A	N/A	N/A	N/A
Biological	N/A	N/A	N/A	N/A	N/A	N/A

Indicate below any other constituents to be analyzed and their forms of preservation: TDS, TSS, color - refrigerated
Were samples for metals analysis filtered in field? Yes X or No
Were samples for metals analysis filtered in laboratory? Yes or No_X
Were field blanks taken? Yes X or No
Were trip blanks taken? Yes X or No
What parameters/analysis were performed on field and trip blanks? Volatile Organics X (FB,TB) Semi-volatile Pesticides PCBs Metals X (FB) Other TDS, TSS, color
Prior to sampling, was an equipment blank performed? Yes
Prior to sampling each well, are disposable gloves worn? Yes_X or No
If yes, are the gloves changed between wells? Yes X

CHAIN OF CUSTODY	·				•				
51) Laboratory Nam	Laboratory Name/Certification Number <u>Accutest/12129</u>								
52) Laboratory Add) Laboratory Address 2235 Route 130, Dayton, New Jersey 08810								
53) Laboratory rec	ceipt date and	time_04/29/04	, 15:15						
54) Attach Chain o	of Custody:	Yes <u>X</u>	or No						
Sample Number	Relinquished by	Received by	Time	Date	Reason for change of custody				
MW-1, MW-3, MW-4, MW-6, MW-9, MW-10, MW-2, FB, TB	R, Berner	Accutest	15:15	04/29/04	Relinquished to lab				
·									
AUTHENTICATION									
I certify under perfamiliar with the my inquiry of those information, I below complete and meets and 6.1 through 6.1 submitting false imprisonment.	information co e individuals ieve the subr the descript 12. I am awar	ontained in immediately mitted info ion specific that there	this regression responding the responding tending the results of t	port, an sible fo is true .J.A.C. gnifican	d that based on or obtaining the e, accurate and 7:14A-2.5(a)10, nt penalties for				
Sampler									
Name/Title (printed) Robyn Berr	ner, Hydrogeolog	ist						
SignatureR	y Berne		Da	ite: <u>6/</u>	8/04				
Company Name and Ad	dress <u>Gan</u>	nett Fleming, 20	2 Wall Stre	et, Princetor	1, NJ 08540				

Notes:

- 1. The sampling team may use their own reporting forms only if the forms contain all the information required in this sample collection and preservation form.
- 2. If any of the items within this sample collection and preservation form vary for different monitor wells, the information must be documented within this form or as attachments to this form.

f8.78

CHAIN OF CUSTODY

2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 www.accutesl.com

FEO-EX Tracking #	Bottle Order Control #
Accutest Quote #	Accutest Job # 165845

	Client / Reporting Information						Pn	oject Info	rmatio	n						W. C.			255555000	Reque	ested An	alysis	*******		ď	Matrix Codes
Company Na	me		Pro	ject Na					_		_															DW - Drinking Water
Address	pannett Heming	- -				eno	<u> </u>	NJ	$\rho_{\mathcal{Q}}$	E.	<u> </u>					-									- 1	GW - Ground Water
Address	202 WALL St.		Stre	eel		Tij	+00	. 0	, _A							05 38	-			٦				ı	ŀ	WW - Water
City	State	Zip	City	v		'''	101	State	- <u>()</u> ,						PAUG []	5			1	1/2					l	SW - Surface Water
ρ	cinceton NJ	CΨ	۱۳۰,	,	Pom	ona	Ĺ	Just	3	NJ	_					STARS MTBE	STARS []	. 1		19	 	8				SO - Soil
Project Conta	ct	E-mail	Pro	ject#	<u>, </u>										602 🗆	S C	S D		4	٩		T	l ผ		ŀ	Si Sludge
·	202 Wall St. (inceton NJ co Robyn Berner		<u> </u>		,	42	430	2, OC) [PPt.□ S +15 □	PPL CI	1		70	Fe	1	الماا		ł	O1 - OR
Phone #	609-279-9140		Fax	K #											WIRE I IBA	70 D D1	00		Pb	N	_	led				LIQ - Other Liquid
Sampler's Na			Clie	not Dur	rchase Ordi				`	<u> </u>					\g\ _□		5 ₹	٠, ا	2	Solv	8	ulossia	/5	-		AIR - Air
			Cire	en ru	CHASE CHI	¢1 #									E 52	624 🗆	625 CI	101	+	1 %	+ 6	25.5	9		ļ	SOL - Other Solid
Accutest	Field ID / Point of Collection	SUMMA#		C	ollection					Numb	er of pr	eserve	d Bott	les				0	10	510	70	2	7	}		WP - Wipe
Sample #		MEOH Val#	Dat	le I	Time	Sampled ! By	Matrix	# of bottles	ą l	ğ Ş	230	NO.	P P	300 E	8280 BTEX	8260 C) 18A C)	8270 ABN	Ü	'	~		Ĩ	ì i		ľ	LAB USE ONLY
- 18	mw-1		4/26	-	9:07	RB	Ğ₩	7	3	-+-	<u> </u>	2		-	\times			X	X	×	×	X	×			AMETS WC12
- ZF	mw-3		4/1/2	104	15:09		1	3	П	1	2	1						×	×	×						822
- 3F	mw-4		4/30					3	\Box	_	2	i,	П					×	×	×						AINET3, WCZZ
-46	mw-6		11	11.	10:21		\top	3		\dashv		1	\vdash	 	 			×	X	×					Ť	
- 5 E			1				+		┥	_		 '	\vdash	+	 -						-			1	+	
	mw-9			\dashv	9:54		+	3	\sqcup	4	ᆚ	11	\sqcup		——			X	×	×						
- 6F	mW-10				10:43			7	3	_]-	2	2			×			×	\times	×	×	×	×			
- 7f	mw-z				10:13			7	.3	Π.	2	2			×			X	X	×	X	X	X			
- 8F	FB		V		1100		LQ	6	2	1	2	2			×			X	Х	×	×	X	×			
- 9	TB		4/32	104	18:00	-	La	2	2	\neg					×											
										_	十		П													
	Turnaround Time (Business Days)							Data D	eliverat	ole Info	rmation	·L		L				237) 1200 10			Commen	ts / Ren	narks			
🕦 SId. 15	Business Days Approved By: / D	ate:			Commen	cial "A"				FULL	CLP					\top										· · · · · · · · · · · · · · · · · · ·
10 Day F			_		l Commer	cial "B"				NYAS	P Categ	ory A				-	WHO	<u> </u>	40	<u> </u>	.5	4 4	1 C	4.5	igne	a-tures
☐ 5 Day Ri		-,	_	1 '	D NJ Redu	ced					P Categ	ory B				14	L T (n	76 6	- 1	< 5e	15.	<i>œ</i> .	1/29/	24	U	a-hres
☐ 3 Day El			-	_	NJFull						Forms	,								7-		<u></u>				
2 Day El			_	-] Other				/ 25 -	ו חמיביי	Format		-			<u> </u>	_		_							
D 1 Day E	MERGENCY		-		C	:-1 - 4!	· - b		ı.																	
Other	& Rush T/A data available V/A LabLink	· · · · · · · · · · · · · · · · · · ·	-		Comm	ercial "A"	= Kes	uits Un	ıy							-									·	
	A KOSII TIA OATA AAAIIADIE VIA LADLIIK		Sam	pole Cu	ustody mus	t he door	mented	helnw es	ch lim	e samo	nies cha	nne oc	22922	ion inclu	dino cou	rier deliv	erv 3	Name	destrucción de	300000000	******		(03000000000000000000000000000000000000	48007	na mu	
Refinquished by	r Sampler:	Date Time: Re	ceived by		//-	. 50 5000		-	ui 19		uished b		, ,000	- HILITA		0011	-√-1- 5000		Time:		Received		Section 1881		***************************************	
1 74		4/29/07/154\$			[H)					2											2					
Relinquished by		Date Time Re	ceived by							Reling	uished b	y.						Date	Time.		Received	1 by:				
Relinquished by	r	Date Time: Re	caived by	کے						4 Comb	dy Seal f				······································	Ores	erved wh	400 mm	rable .		4			r.	poler Terr	<u> </u>
5 H	· · · · · · · · · · · · · · · · · · ·		waren uy	,						CASID	~y 568/}	'				ries	el aca mu)		On to 6			ひヹ		
0										-							-								,—⋍	

LABORATORY SAMPLE CHAIN OF CUSTODY/CHRONICLE FOR NJPDES COMPLIANCE MONITORING

Relinquisher of sample: (pleas	e print)
Name: Robyn Berner	Signature: Robyn Benna
Company: Gannett Fleming	
Title: Hydrogeologist	
Date: 4/29/04	Time: 15:15
Inhorstory sample recipient: ()	please print) /
Name: M. Popow/ Laboratory Name: Accepts to	Signature:
Laboratory Name: Accord	
NJDEP Laboratory Cert. No	Title: Spervisor, Spx. Figm
Date: 4/27/04	
Did samples arrive cold? Yes	or No
Were the samples properly prese	rved? Yes / or No
If no, which analyses will be a	
	·
Did sample for the analyses of	volatile organics contain
headspace? Yes or No	
was the sentum in place with the	TFE side down? Yes / No

N65845

QAQC-B Page 2 of 3

Sample Preparation Chemist

		Name please print	signature	Date
1	. Base/Neutrals			. •
2.	. Acids			
3.	. Pesticides			
4.	. Herbicides			
5.	PCB s			:
6.	Metals			
7.	Other			
8.	Other			
9.	Other			
		<u>Analy</u> :	<u>st</u>	•
		Name please print	Signature	Date
1.	Base/Neutrals			<u></u>
2.	Acids		<u></u>	
3.	Pesticides			
4.	Herbicides			
5.	PCB 's			
6.	H etals	-	P 200-10	5/8/2004
7.	Volatiles	Carol B Diaz	Comparle	<u> </u>
8.	TOC			
9.	TOX			
10.	Phenols (total)			•
11.	Cyanide (total)			
12.	Other			
13.	Other	-		
14.	Other -			
15.	Other			

N65845

QAQC-B Page 2 of 3

Sample Preparation Chemist

		Name please print	Signature	- Date
1.	Base/Neutrals			· · · · · · · · · · · · · · · · · · ·
2.	Acids			
3.	Pesticides			<u> </u>
4.	Herbicides			
5.	PCB ts		1- 1-0	5-11-04
6.	Metals	Jieyu Wang	Lyn Way	<u> </u>
7.	other		<u> </u>	
8.	Other .			
9.	Other			
		Analy	•	•
· ·		Name please print	Signature	Date
1.	Base/Neutrals	•		
2.	Acids			
3.	Pesticides		·	
4.	Herbicides			•
5.	PCB 's	Nancy Duan	Ne	4041Z
б.	Netals	· Nancy Dian	NE C	
7.	Volatiles	. ———		
B .	TOC			
9.	TOX	· .		
LO.	Phenols (total)			•
LI.	Cyanide (total)			
	Other			-
	Other			
L4.	Other			
	•			

N65845

QAQC-B Page 2 of 3

Sample Preparation Chemist

	•	Name please print	Signature	Date
	1	Name Proces		. •
1.	Base/Neutrals			
2.	Acids			
3.	Pesticides			
4.	Herbicides			<u></u>
5.	PCB 's			•
6.	Metals			·
•	•	•		
7.	Other	•	•	•
8.	Other			
9.	Other			
		Anal	vst	
			signáture	Date
		Name please print	0.292	<u> </u>
l.	Base/Neutrals		-	
2.	Acids	····	•	· · · · · · · · · · · · · · · · · · ·
3.	Pesticides			
4.	Herbicides		<u> </u>	
5.	PCB 's			
·				
6.	Řetals	45		
7.	Volatiles			
8 -	TOC			
9.	TOX			
10.	Phenols (total)	,		
	Cyanide (total)			
	other (Cows?)	Laura Earomirski	(LE) Laura B Earonistei	5/25/04
		Natalie Romanoff	(NR) N. Romanoff	5.25.04
	Other (JDS)		(NR) N. Lannaff	5-25-01
14.	other (TSS)	Nataly Romanoff	Tion in town	
15.	Other		V	

Did any of the sample extractions and/or analyses exceed times? Yes No	holding
If re-extraction and/or re-analysis is necessary, indicreason and attach another Laboratory Chaim of Custody/C with the appropriate signatures and dates.	cate the hronicle
Quality Assurance Officer	
Name (please print) Signature	Date 24 bley 09

LABORATORY AUTHENTICATION STATEMENT FOR MJPDES COMPLIANCE MONITORING

I certify under penalty of law, where applicable, this laboratory meets the Laboratory Performance Standards and Quality control requirements specified in N.J.A.C. 7:18, 40 CFR 136 for Water and Wastevater Analyses and SW 846 for Solid Waste Analyses. I have personally examined and am familiar with the information contained in this report, and that, based on my inquiry of those individuals immediately responsible for obtaining the information. I believe the submitted information is true, accurate, complete, and meets the standards specified in N.J.A.C. 7:18, 40 CFR 136, and/or SW 846. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment.

Laboratory Manager (as defined in N.J.A.C. 7:18)

I. General Inform	nation:					
Client Name: <u>Le</u>	nox China, Pomo	na, NJ	Project No. : 42430.001			
Project Name: NJPDES Quarterly Monitoring			Sampled By: <u>RB/SK</u>			
Well No.: MW-1				Well Use: Moni	toring	
Sample ID: MW-1 Sample Date			29/04	Sample Time: 09	<u>9:07</u>	
				•		
II. Well Information: PID Reading: -			Well Diameter: 4 inches			
Static Depth to Water: 8.43 ft. below m.p.			Measuring Point (m.p.): PVC Casing			
Total Well Depti	h : <u>29.75</u> ft. below	m.p.	Measuring Poin	Measuring Point (m.p.): PVC Casing		
Δ h: 21.32 feet			Volume of Stan	ding Water: <u>13.86</u>	gallons	
Volume to be rea	moved: <u>41.58</u> gal	lons	Actual Volume	removed: <u>42.00</u> ga	allons	
	-					
III. Sampling Inj Purging Method ☐ Peristaltic Pu	:		Submersible	Pump		
— ☐ Bailer	•	.1	Other			
	/Recovery:	⊠ Good	Poor	Other		
•				Purge Time:		
Pump Flow Rate: 3.2 gpm				~ ~ • • • · · · · · · · · · · · · · · · ·		
Purge Chemistry	y:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
08:56	10	5.25	0.094	-	10.1	
08:59	20	5.20	0.087		10.0	
09:02	30	5.18	0.090		10.0	
09:05	40	5,15	0.090	-	10.1	
			· · · · · · · · · · · · · · · · · · ·			
Depth to water a	fter purge: <u>8.44</u>	ft. below m.p.		Time: <u>09:07</u>		
Depth to water prior to sampling: 8.44 ft. below m.p.			p.	Time: <u>09:07</u>		
Sample Appeara		_		⊠ Clear □] Other	
Sample Odor:	None	□o	ther			
IV. Sample Analy Sample Paramet		Color, TDS/TSS		⊠ Unfilter	ed	
Metals:	44	M Trittered	Data Shinne	Date Shipped: 4/29/04		
Laboratory: Acc	utest		Date Snippe	u. <u>4122104</u>		

I. General Infor- Client Name: Le	mation: enox China, Pomo	na, NJ		Project No.: 424	130.001
	NJPDES Quarterly	•	Sampled By: <u>RB/SK</u>		
Well No.: MW-3				Well Use: Monit	toring
Sample ID: MW	_	Sample Date: 4/	28/04	Sample Time: 15	5:09
		• –		-	
II. Well Information: PID Reading: <u>-</u>			Well Diameter:	4_inches	
Static Depth to	Water : <u>7.16</u> ft. be	low m.p.	Measuring Point (m.p.): PVC Casing		
Total Well Dept	h: <u>30.40</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: 23.24 feet			Volume of Stan	ding Water: <u>15.11</u>	gallons
	moved: <u>45.33</u> gal	lons	Actual Volume	removed: <u>46.00</u> ga	llons
III. Sampling Information: Purging Method: ☐ Peristaltic Pump			Submersible Pump		
☐ Bailer			Other		
Well Drawdown/Recovery:			Poor	Other	
Pump Flow Rate: 3.1 gpm			Purge Time: 15 min.		
Purge Chemistr	v:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
14:57	10	5.55	0.453		13.9
15:00	20	5.58	0.434	<u>-</u>	13.0
15:03	30	5.56	0.446		13.5
15:06	40	5.58	0.440		13.5
					<u> </u>
					
Depth to water a	after purge: 7.17	ft. below m.p.		Time: <u>15:09</u>	
Depth to water prior to sampling: 7.17 ft. below m.			p. Time: <u>15:09</u>		
Sample Appeara	nce: Turbi	d 🗌 SI	lightly Turbid	⊠ Clear	Other
Sample Odor:	⊠ None	□ o	ther		
IV. Sample Anal Sample Paramet Metals:	yses: ters: <u>Metals, Colo</u>	<u>r</u> ⊠ Filtered		⊠ Unfilter	ed
Laboratory: Accutest			Date Shipped: <u>4/29/04</u>		

I. General Information Client Name: Le	nation: nox China, Pomoi	na, NJ		Project No.: <u>424</u>	30.001	
Project Name: NJPDES Quarterly Monitoring			Sampled By: RB/SK			
Well No.: MW-4				Well Use: Monit	oring	
Sample ID: MW		Sample Date: 4/	<u>29/04</u>	Sample Time: <u>09</u>	:34	
II. Well Information: PID Reading: _			Well Diameter:	<u>4</u> inches		
Static Depth to V	Water : <u>4.70</u> ft. bel	low m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Dept	h: 26.80 ft. below	m.p.	Measuring Poin	ıt (m.p.): <u>PVC Casi</u>	ng	
Δ h: 22.10 feet		-	Volume of Stan	ding Water: <u>14.37</u>	gallons	
Volume to be rea	moved: 43 11 gall	lons		removed: <u>44.00</u> ga		
volume to be re-	110 v cu. 45.11 gun	ions	120000	<u>, , , , , , , , , , , , , , , , , , , </u>		
III. Sampling Inj Purging Method ☐ Peristaltic Pu ☐ Bailer	:		Submersible	_		
	/Decovery:	⊠ Good	Poor	Other		
•			Purge Time:			
Pump Flow Rate	:: <u>3.1</u> gpm			Turge Time.		
Purge Chemistry	v:	·				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
09:23	10	5.93	0.233	-	14.0	
09:26	20	5.89	0.243	·-	13.8	
09:28	30	5.80	0.248		13.9 13.9	
09:31	40	5.79	0.250	-	13.5	
_			<u> </u>			
Depth to water a	fter purge: <u>4.72</u> 1	ft. below m.p.		Time: <u>09:34</u>		
Depth to water prior to sampling: 4.72 ft. below m.			p. Time: <u>09:34</u>			
Sample Appeara	-			⊠ Clear □	Other	
Sample Odor:	None	□ o	ther			
IV. Sample Analy Sample Paramet Metals:		∑ Filtered		∑ Unfilter	ed	
Laboratory: Accutest		•	Date Shipped : <u>4/29/04</u>			

4						
I. General Informati Client Name: <u>Leno</u>		ia, NJ		Project No.: 424	30.001	
Project Name: NJP	DES Quarterly	Monitoring	Sampled By: RB/SK			
Well No.: MW-6				Well Use: Monit	oring	
Sample ID: <u>MW-6</u> Sample Date: <u>4/</u>			<u> 29/04</u>	Sample Time: 10): <u>21</u> ~	
II. Well Information: PID Reading: _			Well Diameter:	<u>4</u> inches		
Static Depth to Wa	ter: <u>5.97</u> ft. bel	ow m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Depth:	30.75 ft. below:	m.p.	Measuring Poin	t (m.p.): <u>PVC Casi</u>	<u>ng</u>	
Δ h: 24.78 feet			Volume of Stand	ling Water: 16.11	gallons	
Volume to be remo	ved: <u>48,33</u> gall	ons	Actual Volume	removed: <u>50.00</u> ga	llons	
III. Sampling Information: Purging Method: ☑ Peristaltic Pump ☐ Bailer Well Drawdown/Recovery: ☑ Good Pump Flow Rate: 3.6 gpm			☐ Submersible Pump ☐ Other ☐ Poor ☐ Other Purge Time: 14 min.			
Purge Chemistry:	<u>:⊼ P</u> b				_	
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
10:09	10	4.15	0.097		13.6	
10:11	20	4.15	0.117		13.9	
10:14	30 40	4.19	0.128 0.142	-	14.1 14.1	
10:17	50	4.19	0.152	-	14.1	
					~	
Depth to water afte	• • -	_).	Time: 10:21		
Sample Appearance	e: 🔲 Turbic	ı 🗌 Si	ightly Turbid	⊠ Clear □	Other	
Sample Odor:	None None	□o	ther			
<i>IV. Sample Analyses</i> Sample Parameters Metals:		⊠ Filtered		⊠ Unfiltere	ed	
Laboratory: Accutest			Date Shipped : <u>4/29/04</u>			

I. General Information Client Name: Le	mation: enox China, Pomo	na. NJ		Project No.: <u>424</u>	30.00 <u>1</u>	
Project Name: NJPDES Quarterly Monitoring			Sampled By: RB/SK			
Well No.: MW-9				Well Use: Monit		
, 	-	Samula Data: 4/	20/04	Sample Time: 09	_	
Sample ID: MW	<u>-9</u>	Sample Date: 4/	<u>29/04</u>	Sample Time: 02	<u></u>	
II. Well Information: PID Reading:			Well Diameter:	4 inches		
Static Depth to	Wate r: <u>10.08</u> ft. b	elow m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Dept	h : <u>31.15</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Δ h: 21.07 feet			Volume of Stan	ding Water: <u>13.70</u>	gallons	
	moved: <u>41.10</u> gal	lons	Actual Volume	removed: <u>42.00</u> ga	llons	
volume to be re	1110 year <u>111170</u> Bar					
III. Sampling Information:Purging Method:Peristaltic Pump			Submersible Pump			
Bailer			Other			
Well Drawdown/Recovery:			Poor	Other		
Pump Flow Rate: 3.2 gpm			Purge Time: 13 min.			
Purge Chemistry	v:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
09:43	10	6.30	0.432	-	14.8	
09:46	20	5.95	0.296		15.3	
09:49	30	5.86	0.264		15.5 15.5	
09:52	40	5.83	0.252	<u> </u>	1,2,	
					.	
. Depth to water a	ifter purge: <u>10.10</u>	ft. below m.p.		Time: <u>09:54</u>		
Depth to water p	orior to sampling	: <u>10.10</u> ft. below m	n.p.	Time: <u>09:54</u>		
Sample Appeara	_			⊠ Clear □] Other	
Sample Odor:	None Non	□о	ther			
	—					
IV. Sample Analy Sample Paramet Metals:		<u>r</u> ⊠ Filtered		⊠ Unfilter	ed	
Laboratory: Accutest			Date Shipped: 4/29/04			
	31 1 1 T T					

I. General Information Client Name: Le	n <i>ation</i> : nox China, Pomor	<u>ıa, NJ</u>	Project No.: 42430.001			
Project Name: N	JPDES Quarterly	Monitoring	Sampled By: <u>RB/SK</u>			
Well No.: MW-1	<u>o</u>		Well Use: Monitoring			
Sample ID: MW	-10/MW-2	Sample Date: 4/2	<u> 29/04</u>	Sample Time: 10	<u>:43</u> ⁄	
	•					
II. Well Information: PID Reading: _			Well Diameter:	4 inches		
Static Depth to	Water : <u>4.55</u> ft. bel	ow m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Dept	h: 29.30 ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Casi</u>	ng ·	
Δ h: 24.75 feet			Volume of Stan	ding Water: <u>16.09</u>	gallons	
	moved: <u>48.27</u> gall	ons	Actual Volume	removed: <u>50.00</u> ga	llons	
				Y.		
III. Sampling Information: Purging Method: ☐ Peristaltic Pump			☐ Submersible Pump			
☐ Bailer			Other			
Well Drawdown	/Recovery:	⊠ Good	Poor	Other		
Pump Flow Rat	e: <u>3.6</u> gpm		Purge Time: 14 min.			
Purge Chemistr	v :			1,		
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
10:32	10	5.25	0.081	_	14.7	
10:34	20	5.31	0.092	-	15.0	
10:37	30	5.36	0.113	-	15.1	
10:39	40	5.33	0.137		15.2 15.2	
10:42	50	5.37	0.153		13.2	
Depth to water	after purge: <u>4.56</u> 1	ft. below m.p.		Time: <u>10:43</u>		
Depth to water prior to sampling: 4.56 ft. below m.p			p. Time: 10:43 🗸			
Sample Appeara	ance: 🔲 Turbi	d S	lightly Turbid	⊠ Clear □	Other	
Sample Odor:	⊠ None	□ o	ther			
Metals:	ters: Voc, Metals,	Color, TDS/TSS ☑ Filtered	D. 4. Chi.	☑ Unfilter	ed	
Laboratory: Accutest			Date Shipped: <u>4/29/04</u>			

NE W JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

Form T-VWX-14

Signature

MONITORING REPORT - TRANSMITTAL SHEET

REPORTING PERIOD MO YR MO YR NJPDES No. 0 4 0 4 thru 0 6 0 4 0 0 8 6 4 8 7 LENOX INCORPORATED PERMITEE: Name 100 LENOX DRIVE Address LAWRENCEVILLE, NEW JERSEY 08648 LENOX CHINA, A DIVISION OF LENOX INCORPORATED **FACILITY:** Name **TILTON ROAD** Address **ATLANTIC** POMONA, NEW JERSEY 08240 (County) Telephone (609) 965-8272 **OPERATING EXCEPTIONS** FORMS ATTACHED (Indicate Quantity of Each) YES NO DYE TESTING SLUDGE REPORTS - SANITARY T-VWX-009 TEMPORARY BYPASSING T-VWX-007 T-VWX-008 SLUDGE REPORTS - INDUSTRIAL **DISINFECTION INTERRUPTION** T-VWX-010A T-VWX-010B MONITORING MALFUNCTIONS WASTEWATER REPORTS UNITS OUT OF OPERATION T-VWX-013A T-VWX-011 T-VWX-012 OTHER GROUNDWATER REPORT (As per permit) (Detail any "yes" on reverse side in appropriate space.) 7 VWX-015 VWX-016 VWX-017 NJPDES DISCHARGE MONITORING REPORT **EPA FORM 3320-01** I certify under penalty of law that I have personally examined and am familiar with the **AUTHENTICATION** information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment PRINCIPAL EXECUTIVE OFFICER or **DULY AUTHORIZED REPRESENTATIVE** LICENSED OPERATOR Name JOHN F. KINKELA Name DIR. OF ENVIRONMENTAL ENGINEERING Title Grade & Registry No.

Signature

NE W JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

Form T-VWX-14

Signature

MONITORING REPORT - TRANSMITTAL SHEET

REPORTING PERIOD MO YR YR NUPDES No. 0 4 0 4 thru 0 6 0 4 0 0 8 6 4 8 7 LENOX INCORPORATED PERMITEE: Name 100 LENOX DRIVE Address LAWRENCEVILLE, NEW JERSEY 08648 LENOX CHINA, A DIVISION OF LENOX INCORPORATED FACILITY: Name **TILTON ROAD** Address (County) **ATLANTIC** POMONA, NEW JERSEY 08240 (609) 965-8272 Telephone **OPERATING EXCEPTIONS** FORMS ATTACHED (Indicate Quantity of Each) YES NO SLUDGE REPORTS - SANITARY DYE TESTING T-VWX-009 TEMPORARY BYPASSING T-VWX-008 T-VWX-007 DISINFECTION INTERRUPTION SLUDGE REPORTS - INDUSTRIAL MONITORING MALFUNCTIONS T-VWX-010A T-VWX-010B UNITS OUT OF OPERATION WASTEWATER REPORTS T-VWX-013A T-VWX-011 T-VWX-012 OTHER (Detail any "yes" on reverse side GROUNDWATER REPORT (As per permit) in appropriate space.) VWX-017 7 VWX-015 VWX-016 NJPDES DISCHARGE MONITORING REPORT **EPA FORM 3320-01** I certify under penalty of law that I have personally examined and am familiar with the **AUTHENTICATION** information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment PRINCIPAL EXECUTIVE OFFICER or **DULY AUTHORIZED REPRESENTATIVE** LICENSED OPERATOR Name JOHN F. KINKELA Name Title DIR. OF ENVIRONMENTAL ENGINEERING Grade & Registry No.

Signature.

Form VWX-15A

PLEASE	TYF	EC	RP	RIN	IT۱	<u>NIT</u>	HE	<u>3AL</u>	LPOINT PEN						_	<u>/EL</u>	<u>L II</u>) No	<u>). </u>	MV	<u>V-1</u>	
FACILITY	NAME		ΙF	NO	X (сні	NA					SW	ו וכו) Nc),							
LAB NAME	=								TON, NJ													
<u> </u>					,	<u></u>	<u>, D.</u>															
									•	SAMPLE D	ATE	•										
	NJPD	ES N	10.			_			WELL PERMIT No.	YR MO		AY	1		_	3 CE	_	_		WQ	MU	SE
S NJ 0	0	8 6	3 4	8	7]	3	6		0 4 0 4	2		ļ		2	1	2	9		1	لـــا	1
1 2					8		9		16	17		22		23				27	,	<u> </u>	28	ئــــ
									,	الملماة		ı	۱.	٦١	1 ^	a	ı					
THE SCH	EDUL	E IN	DICA	TE) BE	£LO	W I	STO	O BE OBSERVED FROM	0 4 0		l	Ļ	۱0 آه	Γŕ	4	j					
									SUBMIT WITH SIGNED T-VWX		'R		IV.	ΝO	Y	ĸ						
					_	_		_								,						R
J F M A E A			7 <i>(</i>)		S	O C	N	D _.						•								Ε
	R								ANALYSIS	UNITS		PAR	AMI	ETE	R			VAL	_UE	₤		M
	TT	T	i	Ī		T	\Box	Ī	Elev. of top of well casing with cap off	feet Msl: to	ĺ	ĺ			١.			ا	ĺ			İ
X L	X	┙	X	Ш.	_	X	_	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	(as specified in well completion report)	nearest 0.01	7	2	1	1	0	H	6	9	ŀ	2	8	┢
			I,						Elev. of original ground level (as specified in well completion report)	feet Msl: to nearest 0.01	7	2	0	0	9		6	7	١.	اها	0	ŀ
<u>× </u>	X		<u> X</u>	┢	-	X	₩	├	Depth to water table from top of casing	feet: to	╁	 -	۲	۳	۱Ť	一	H	H	Ė		\Box	
x	x		X			x			prior to sampling (with cap off)	nearest 0.01	8	2	5	4	6			8	Ŀ	4	3	<u> </u>
	╬	+	+^-	一	┢	۲	 	T	Depth to water table from original	feet: to			Г									
x	x		X			X		l_	ground level prior to sampling	nearest 0.02	7	2	0	1	9	<u> </u>	L.	6	Ŀ	1	5	<u> </u>
x									Sodium, Total	mg/l as Na	8	0	2	3	5				L			L.
×	x		x			x			Lead, Total	ug/l as Pb	0	1	0	5	1			3	<u>.</u>	0		ĸ
	17	_	—		 		T	\vdash						П								١,,
X	X	Д.	X	L		X	<u> </u>	L	Zinc, Total	ug/l as Zn	0	1	0	9	2	 	2	.0	⊢÷	0		к
x			ł			İ		ľ	Sodium, Dissolved	mg/i as Na	8	0	2	3	5		<u> </u>					
1-1-	+-+	+	+	-		\vdash	┢	\vdash	Coddin, Disserved	†	Π	<u> </u>	Г		Г							
x	x		X	Ŀ	L	X		辶	Lead, Dissolved	ug/l as Pb	0	1	0	5	1	L	Ļ	3	Ŀ	0	 	к
x	x		x			x		L	Zinc, Dissolved	ug/l as Zn	0	1	0	9	2	L	2	0	Ŀ	0		κ
x	x		x			x			Total Dissolved Solids	ppm	7	0	3	0	0		6	6	Ŀ	0		_
x	x		х			x			Color	pt-co	0	0	0	8	0		5	0	Ŀ	0		
x	x		x			x			рН	std. units	0	0	4	0	0			5		1	5	
			1		\vdash						,		0	9	5		9	0		0		
X	X	+	<u> </u> X	<u> </u>		X	╁┈┤	⊢	Conductance, Specific	umhos/cm	۲	0	۳	•	٦	H	۳	۲		۳		_
x L	x		×			x			Dissolved Oxygen	mg/l		_	_	L	_				<u> </u>			
x									Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6							_
x									Nitrogen, Ammonia Dissolved NH3+NH4 as N	mg/l as N	0	0	6	0	8		Ш		_			
	\prod																					
	$\dagger \dagger$	+	1			Г	П	П														
	++	+	+-	\vdash		-	Н				-		 			Н	Н			П		

Form VWX-15A

					OF	R PI	RIN	ΤV	ΝIŢ	HE	BAL	LPOINT PEN							/EL	LIC) No	<u>).</u>	MV	<u>V-3</u>	 1
FAC	CILI"	ΓΥN	IAM	Ε		LE	NO	X (CHI	NA					SV		No).							
LAE	NA	ME										TON, NJ										•			
						,,,,			<u> </u>	<u>, </u>															
													SAMPLE D				NI I	1 4 5) CE	рт	No	ļ	WC	M U	و ا
	ا ا		NJP				6	7	1	<u> </u>	Te	WELL PERMIT No. 9	YR MO 0 4 0 4		AY R	1	1 1		3 CE	2		. 1	VVC	MO)
<u>S</u>	NJ	2	U	8	О	4	8	L <u>′</u> 8	j	<u>၂၁</u>	6	16	17		22	-	23		<u> </u>	ىتى	27	1	'	28	
'		2						Ü		3							_	_				,			
TH	E S	CHE	DU	LE I	ND	ICA	TEC	BE	ELO'	W1	s to	BE OBSERVED FROM	0 4 0				6								
												SUBMIT WITH SIGNED T-V		'R		N	10	Y	'R						
												SUBMIT WITH SIGNED 1-V	AAV-01-4												R
J	F	M A	A	Μ	J	J	A U	S	.C	N O	D E														E
N	В											ANALYSIS	UNITS		PAR	AM	ETE	₹	_		VAL	<u>_UE</u>	<u>:</u>		М
			\			V			X			Elev. of top of well casing with cap off (as specified in well completion report)	feet Msl: to nearest 0.01	7	2	1	1	0		6	7		0	9	
X.	<u> </u>	┝	X.			X	-	-	 ^	┝	╁	Elev. of original ground level	feet Msl: to	Ė	-	Ė	Ė	۲		Ť	Ė	Ė	Ť		М
Х			x			X		<u> </u>	X			(as specified in well completion report)	nearest 0.01	7	2	0	0	9	<u> </u>	6	5	Ŀ	0	0	
			<			x			x			Depth to water table from top of casing prior to sampling (with cap off)	feet: to nearest 0.01	8	2	5	4	6	İ		7		1	6	
×.	L	-	<u>X</u>	_		^	-		1	╁	╁	Depth to water table from original	feet: to	۲	<u> </u>	۱Ť	H	۲	 		<u> </u>				П
X			X			X_		<u> </u>	X	L		ground level prior to sampling	nearest 0.02	7	2	0	1	9	L		5	Ŀ	0	7	Н
X												Sodium, Total	mg/l as Na	8	0	2	3	5							
x			х			х			×			Lead, Total	ug/l as Pb	0	1	0	5	1		5	3	Ŀ	9		
x			х			X			x			Zinc, Total	ug/l as Zn	0	1	0	9	2		4	3	5	0		
x												Sodium, Dissolved	mg/l as Na	8	0	2	3	5							
Х			Х			х			х			Lead, Dissolved	ug/l as Pb	0	1	0	5	1		4	7	_	5	<u> </u>	
х			Х			Х			x			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2	<u> </u>	4	1	7	0		Ш
X												Total Dissolved Solids	ppm	7	0	3	0	0							
х			х			X			x			Color	pt-co	0	0	0	8	0	_	1	5		0		
Х			х			x			x	L		рН	std. units	0	0	4	0	0	_		5	Ŀ	5	8	
Х			х			x			X.		<u> </u>	Conductance, Specific	umhos/cm	0	0	0	9	5	_	4	4	0	Ŀ	0	
Х			Х			Х			x	L	<u> </u>	Dissolved Oxygen	mg/l	Ŀ					<u> </u>				Ŀ		Н
X												Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6	_						
											·												Ш		Щ
									\vdash	_															

Form VWX-15A

		OR I	PRI	<u>TN</u>	W۱٦	<u>гн I</u>	BA	LLPOINT PEN							VEL	<u>L II</u>	D N	<u>o.</u>	<u>M</u> V	<u>V-4</u>	
FACILITY N	AME	L	ENO) XC	СН	INA	-				SV	V IC) No	ο.							
LAB NAME								TON, NJ													
N	JPDES			<u>- : -</u>		,		WELL PERMIT No.	SAMPLE D		E AY	·	NJ	LAI	B CE	RT	No.		wc	}M U	SE
SNIO			T8	7	1	3	6		0 4 0 4	2	9	1	1		1	_	_				
1 2	<u>- 1 - 1</u>	<u> </u>		8	,	9		16	17			•	23				27	<u> </u>	L_'	28	
THE SCHE	DULE I	NDIC	ATE	D B	ELC) WC	IS T	O BE OBSERVED FROM		4 ′R]		<u>6</u>		4 (R	İ				,	
								SUBMIT WITH SIGNED T-V	VVX-U14												R
AEA	A M P A R Y		υ	Ε	С	0		ANALYSIS	UNITS		PAR	AME	ETE	R			VAL	_UE	<u> </u>		E M
[.] [.			Т	Τ				Elev. of top of well casing with cap off	feet Msl: to										9	8	
X	<u> </u>	X	╀	╀	X	╁	-	(as specified in well completion report) Elev. of original ground level	nearest 0.01 feet Msl: to	7	2	1	1	0	╁╌	6	6	H	9	-	\dashv
x	k L L	x			X			(as specified in well completion report)	nearest 0.01	7	2	0	0_	9		6	5	L.	0	0	
			1					Depth to water table from top of casing	feet: to												
X	<u> </u>	<u> </u> x	_	╁	X	<u> </u>		prior to sampling (with cap off) Depth to water table from original	nearest 0.01 feet: to	8	2	5	4	6	-		4	$\vdash\vdash$	7	0	\dashv
x	$\langle $	X			X			ground level prior to sampling	nearest 0.02	7	2	0	1	9			2		.7	. 2	
×								Sodium, Total	mg/l as Na	8	0	2	3	5	·						
x ,	<	X			X			Lead, Total	ug/i as Pb	0	1	0	5	1		1	3		7		
		x	<u> </u> _		х			Zinc, Total	ug/l as Zn	0	1	0	9	2	_	6	8	·	3		_
x			_	<u> </u>				Sodium, Dissolved	mg/l as Na	8	0	2	3	5							
x / /	\Box	x	_	_	x			Lead, Dissolved	ug/l as Pb	0	1	0	5	1		1	1		3		_
x /		x	ļ.,	<u> </u>	Х		ļ	Zinc, Dissolved	ug/l as Zn	0	1	0	9	2	_	6	.0	<u>-</u>	5	_	_
x	$\perp \downarrow$	-	_		_			Total Dissolved Solids	ppm	7	0	3	0	0				\vdash	_	\dashv	\dashv
X X	\Box	X		<u> </u>	x	Ш		Color	pt-co	0	0	0	8	0	Ц	2	0		0	_	4
x >		x			х	Ш		рН	std. units	Ô	0	4	0	0			5	_	7	9	_
x x		x			х			Conductance, Specific	umhos/cm	0	0	0	9	5		2	5	0	_	0	_
x x		x	_		х			Dissolved Oxygen	mg/l									\dashv	_	_	_
x			_					Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6				_	_	_	_
																		\dashv	\dashv	\dashv	_
																	_	_	\dashv	\dashv	_
																				\bot	
]				Ì			- {		- 1	

Form VWX-15A

														OV	VNE	ER'S	s w	/EL	<u>L IC</u>	<u> </u>	o	M۱	V-5	
FACI	LITY	NAN	ИΕ		LE	ENC)X	СН	INA	_				SV	/ ID	No).		М۷	N-5				
LAB	MAV	E									TON, NJ													
L						300	<u> </u>		<u>, U</u>		1011,110													
												SAMPLE D	ATE	:										
		NJF	DE	SN	о.						WELL PERMIT No.	YR MO	D.	AY	_	NJ	LAE	3 CE	RT	No.	_	wc	M L	JSE
R.N	u C					8	7	1	3	6	- 0 2 9 1 3 - 0	0 4 0 4	2	7		1	2	1	2	9		l		
1	2			•	J		8		9		16	17		22	•	23	•			27		L	28	
THE	SCF	HEDU	JLE	INI	OIC	ATE	DΒ	ELC	ΟŴ	IS T	O BE OBSERVED FROM	0 4 0 MO Y	4 'R			6 10		4 ′R	ļ					
											SUBMIT WITH SIGNED T-VV		IX.		14	10	•	1						
٠			8.4		* - 1			_	N	D														R
A E	= N = A	1 A N P	M A		_			O C		_														Ε
		` I									ANALYSIS	UNITS	-	PAR	AME	ETEI	₹			VAL	LUE	Ξ		M
П	T	Ť	ΤĖ	T	T	ΤŤ	Ė	Γ	Ť	Ť	Elev. of top of well casing with cap off	feet Msl: to			Γ	Γ					Г	Г		
X		X	İ		X		l	X	-	1	(as specified in well completion report)	nearest 0.01	7	2	1	1	0	Ш	6	4	Ŀ	1	7	_
	丁	1		Π	П	Π	Π	Ι		Г	Elev. of original ground level	feet Msl: to	l _		١.	_	٦					_	_	
X		X	<u> </u>	_	X	L	L	Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	上	(as specified in well completion report)	nearest 0.01	7	2	0	0	9	Ш	6	3	⊢∸	0	0	⊢
		Τ.			Ι			l.,			Depth to water table from top of casing	feet: to	٦	٦	_ ا		۱,					7	8	
X		X	L.	<u> </u>	X	↓	ــــ	X	ـــــ	↓_	prior to sampling (with cap off)	nearest 0.01	8	2	5	4	6	$\vdash \vdash$	 	5	┷	⊬	-	⊢
IJ	1	I۷			x			x			Depth to water table from original	feet: to nearest 0.02	7	2	0	1	9			4		6	. 1	
X	+	X	⊢	⊢	12	 	⊬	쑤	₩	├	ground level prior to sampling	Tilearest 0.02	 	-	۳	<u> </u>	3	╁─┤	Н		H	۳	<u>'</u>	┢╾
			l												L									<u></u>
		T																						
	\dagger	†	T	T	1		T	\vdash	T	Г									П					
┝╌┼╌	+-	+	\vdash	┢	\vdash		-	┢	┢	\vdash								Н				\vdash		
\vdash	+	-	H	╁	-	Ŀ	<u> </u>	├	╀	├-					_		_	\vdash	H		-	 	_	├
	Ļ	<u> </u>		L	L	L	L	L	L	L	· · · · · · · · · · · · · · · · · · ·	ļ	_				_				\vdash			
										L											$oxed{oxed}$			Ĺ.,
										Г														
	T		-		T																			
-	+	十	-	\vdash	╁╴	-			\vdash	┢								П						
+	+	╁	-	\vdash	 		_	<u> </u>	├	-					_			\vdash	\dashv	\dashv	H			_
_	\perp	┼-	_	_	\vdash	_	-	\vdash	L	_		ļ						\vdash	\dashv	\dashv			_	-
	\perp	_	,		Ĺ							<u> </u>		_				$\vdash \mid$		\dashv	\vdash			-
	\perp	igspace																	\dashv					<u> </u>
								Ш				ļ			_				\dashv		Щ	_	-	
																				_\	Щ			Ш
												1			ľ			, 1				- }		

Form VWX-15A

					<u>OF</u>	P	$\frac{1}{2}$	<u> </u>	WIT	HE	<u>3A</u> L	LPOINT PEN			OV				드	LIL) 140).	IVIV		\neg
FAC	HLIT	ΥN	IAM	E		LE	NO	ΧC	CHI	NA					SW	/ IU	NO). 							\Box
LAB	NA	ME			•	AC	CU	JTE	ST	, D,	AY	TON, NJ													
								-	-				SAMPLE D	ATE	Ē	•									
			IJP[)ES	No							WELL PERMIT No.	YR MO	D	ΑY		NJ	LAE	CE	RTI	No.	Γ	wQ	M U	SE
s	, i						Я	7	1	3	6		0 4 0 4	2	9		1	2	1	2	9		Γ		- 1
[일 1	Mal	2	<u> </u>			7	<u> </u>	8]	9		16	17		22		23				27			28	
													ما، اما		;	ا م ا	ا م ا	۱ ۵	اندا						
THE	E SC	CHE	DU	LE	IND	ICA	TE	DВ	ELC)W I	S T	O BE OBSERVED FROM	0 4 0 MO Y	<u> 4</u> ′R	l		6 10		R						
												SUBMIT WITH SIGNED T-V													_
J	F	м	Α	м	J	J	Α	s	0	N	D														R E
A	E	A	Р	A	U		U		C	0	E	ANALYSIS	UNITS		PAR	AME	TE	₹		,	VAL	.UE	:		M
LN T	В	R	R	<u> </u>	N	_	٦	<u> </u>	T	r	۳	Elev. of top of well casing with cap off	feet Msl: to	Τ	1	Γ		Ì	Γ		Ī		\neg	\neg	
x		ļ	x			х		l	x			(as specified in well completion report)	nearest 0.01	7	2	1	1	0		6	5		0	8	
\vdash		- 1	$\stackrel{\sim}{H}$					\vdash		\vdash	┢	Elev. of original ground level	feet MsI: to	Π				Γ							- 1
x		ı	\times			X	-		X	1		(as specified in well completion report)	nearest 0.01	7	2	0	0	9		6	3	\perp	0	0	ᅴ
П												Depth to water table from top of casing	feet: to				١.	l _			_			ا ہـ ا	
x			X			Х			Х		L	prior to sampling (with cap off)	nearest 0.01	8	2	5	4	6	<u> </u>	\Box	5	⊢∺	9	7	ᅱ
												Depth to water table from original	feet: to	,	١,	_		9			3		8	9	
X			X	_		Х		<u> </u>	X		<u> </u>	ground level prior to sampling	nearest 0.02	7	2	0	1	9	┝	-	-	\dashv	ᅴ	-	ᅱ
x	Ì											Sodium, Total	mg/l as Na	8	0	2	3	5					_		\dashv
x			х			X			x			Lead, Total	ug/l as Pb	0	1	0	5	1			3		0		к
х			х			X			х			Zinc, Total	ug/l as Zn	0	1	0	9	2		2	0		0		κ
X							,					Sodium, Dissolved	mg/l as Na	8	0	2	3	5							
		_	_					\vdash	\vdash		\vdash	Codiani, Processor		Ī		Г		<u> </u>							
X		_	Х			Х		<u> </u>	X.	_		Lead, Dissolved	ug/I as Pb	0	1	0	5	1			3	\dashv	0	\dashv	К
x			х			Х			X			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0		0	_	ĸ
x											<u> </u>	Total Dissolved Solids	ppm	7	0	3	0	0	igspace		_	\vdash			_
х			x			x			x		ĺ	Color	pt-co	0	0	0	8	0			5_		0		
x			х			х			x			рН	std. units	0	0	4	0	0			4		1	9	
x			X			X			х			Conductance, Specific	umhos/cm	0	0	0	9	5		1	5	2		0	
	\dashv		T						X				mg/l				-								
×	+	\dashv	X		_	X			Ĥ		<u> </u>	Dissolved Oxygen		\vdash							ᅦ	\exists	\exists	\exists	\neg
×	_	-	_	-	-							Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6	_			\dashv	\dashv		\dashv
	_	_												-	ļ	_		_				\dashv	\dashv	\dashv	_
	j													$ldsymbol{f eta}$		<u> </u>	L					4		_	
												· _ ·	<u>.</u>												_
	_	1	7		_			i																	

Form VWX-15A

Pl	EΑ	SE	TY	PE	OI	3 P	RIN	۱T۱	WI ⁻	ГΗ	ВА	LLPOINT PEN			_				VEL	<u>L 11</u>	<u>и с</u>	ο.	M۱	N-9	
FA	CILI	ΤΥ	NAM	1E		LE	NC	X	CH	INA	\ \	-			sv	V IC) No).							
LA	B N	AME										TON, NJ					•								
<u> </u>	_				-					<u>, =</u>	-														
												AND AND AND AND AND AND AND AND AND AND	SAMPLE D							- D-T	Nia		Trace	am u	OE.
ſs	ו.א[NJP 0				8	7	1	<u> 3</u>	6	WELL PERMIT No. - 0 7 1 6 0 - 9	YR MO 0 4		AY 9	1	1	~	3 CE	-	_	1	I	IIVI U	SE
1	1	2		لگ		<u>.</u>		8	_	9	<u>- ر</u>	16	17	1	22	•	23				27	•	L	28	
Tŀ	IE S	CHI	EDL	ILE	INE	OICA	ATE	DВ	ELC	ow	IS T	TO BE OBSERVED FROM	0 4 0 MO	4 (R	j		6		4 ′R]				• -	
					ı							SUBMIT WITH SIGNED T-VI						•							
J	F	М	Α	М	J	J	Α	s	0	N	D														R
A	E	A	Р	A	U	U	U	E	C			ANALYCIC	, UNITS		DAE	. A B 41	ETEI	D			VAI		=		E M
L	ТВ	T	R	Ť	N	<u>.</u>	G		Τ'	Ť	Т	ANALYSIS Elev. of top of well casing with cap off	feet Msl: to	Π	TAN	T		Ì	Г				Ė		Ë
X			X			Х	ļ		X		L	(as specified in well completion report)	nearest 0.01	7	2	1	1	0	$oxed{igspace}$	6	9	Ŀ	5	1	
x			x			x			x	ŀ		Elev. of original ground level (as specified in well completion report)	feet Msl: to nearest 0.01	7	2	0	0	9		6	8		0	0	
屵	\vdash	┢	<u> </u>						<u> </u>	┢╌	╁	Depth to water table from top of casing	feet: to	Ė	_	<u> </u>	1								
X	L	L	Х			X	_		Х		L	prior to sampling (with cap off)	nearest 0.01	8	2	5	4	6	ļ .	1	0	Ŀ	0_	8	<u> </u>
x			x			x			X			Depth to water table from original ground level prior to sampling	feet: to nearest 0.02	7	2	0	1	9			8	١.	5	7	
Г		┢	Ĥ				T		Ĥ	┢	十	ground level prior to damping													
X	<u> </u>	_	<u> </u>			ļ		_	_	L	╀	Sodium, Total	mg/l as Na	8	0	2	3	5	├-			-	\vdash	-	
x	L.		х			x			x			Lead, Total	ug/l as Pb	0	1	0	5	1	L		3	<u>.</u>	0		κ
×		ĺ	$ _{x} $			x			×			Zinc, Total	ug/l as Zn	0	1	0	9	2		2	0		0		к
x												Sodium, Dissolved	mg/l as Na	8	0	2	3	5							
户		_				-	\vdash	\vdash	-	\vdash	+-	Joulani, Dissolved	Ing/r as rea	۲	Ü	-	٦	Ť							
×	_	_	X.	\dashv		X	<u> </u>	-	X	ļ	┞	Lead, Dissolved	ug/l as Pb	0	1	0	5	1			3		0		К
X			х			x			x		L	Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0		0		к
х												Total Dissolved Solids	ppm	7	0	3	0	0							
x			x			х			x			Color	pt-co	0	0	0	8	0		1	0		0		
x			х			Х			х			рН	std. units	0	0	4	0	0			5		8	3	
										-								5		2	5	2		0	
X	_	_	×	\dashv		X			X	-	-	Conductance, Specific	umhos/cm	0	0	0	9	3		2	5			\dashv	
X	Ц		X	_		X			X	<u> </u>	L	Dissolved Oxygen	mg/l			Ц							\dashv		
x												Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6							_
x					j							Nitrogen, Ammonia Dissolved NH3+NH4 as N	mg/l as N	0	0	6	0	8	Ш						
				T																					
			H	\neg																					\neg
			\dashv	\dashv	\dashv	\dashv		\dashv			_									_			\dashv	\dashv	_

Form VWX-15A

GROUNDWATER ANALYSIS - MONITORING WELL REPORT

OWNER'S WELL ID No. MW-10

					OF	R P	RIN	1T \	WIT	ГΗ	BAI	LPOINT PEN							/EL	LI	<u> N</u>	0.	ΜV	V-10)
FAC	:ILI	ΓÝΝ	ΝĀΝ	Ε		ıF	NO) X	CHI	ΝA					ISW	/ ID	No).							
LAE	NA	ME										TON, NJ													
						AC	<u>, C C</u>) [-01	<u>, D</u>	<u> </u>	1011, 110						-							
													SAMPLE D	ATE	Ē							,			
		1	NJP	DES	No.	ı			_			WELL PERMIT No.	YR MO		AY				CE	_	_		WQ	MU	SE
S	NJ	0	0	8	6	4	8	7		3	6	- 0 7 1 6 1 - 7	0 4 0 4	2	9		1	2	1	2	9		l		
1		2						8	-	9		16	17		22		23				27			28	
771-15	- 6.	- CLIF		i =	INIT		TC1	n B	i i c	71A/	IC T	O BE OBSERVED FROM	0 4 0	 4	1	l o l	6	Ιo	4						
וחו	= 0	O!TIE			IIAL	1102	, ı L	00	LLC	,,,,	10 1	O BE OBOEKVED I KOM		'R			10		'R						
												SUBMIT WITH SIGNED T-V	/WX-014												
	F	N.A	Δ	м	J	J	Α	s	0	N	D		1												R
A	E	A	P	Α	Ū	Ü	Ü	Ε	С		E							_				: :-	_		E M
N	В	R	R	Y	N	L	G	Р	T	<u>, v</u>	<u> </u>	ANALYSIS	UNITS	Γ.	PAR	AME	TE	₹	-		VAL	-06	<u>:</u>		<u>'''</u>
x			U			x		l	x			Elev. of top of well casing with cap off (as specified in well completion report)	feet Msl: to nearest 0.01	7	2	1	1	0		6	3		5	. 1	- 1
Н			X	-		^-	-	┝	r	-	+	Elev. of original ground level	feet Msl: to	ΙĖ	F	i i	H	┪	T					一	
×			х			x			X			(as specified in well completion report)	nearest 0.01	7	2	0	0	9		6	2	<u>.</u>	0	0	
П												Depth to water table from top of casing	feet: to										ı _	_	
X			Х			X	L_		X	<u> </u>	L	prior to sampling (with cap off)	nearest 0.01	8	2	5	4	6		_	4		5	5	
$ _{x} $			х			x			x			Depth to water table from original ground level prior to sampling	feet: to nearest 0:02	7	2	0	1	9			3		0	4	
			À			Ĥ	-	<u> </u>			ļ		,				_	Ţ_							
Χ.				_		_	<u> </u>		├	-	┝	Sodium, Total	mg/l as Na	8	0	2	3	5	┝	_			-	\dashv	ᅥ
х			Х		L_	Χ.			x		L	Lead, Total	ug/l as Pb	0	1	0	5	1	· ·		3	<u>.</u>	0		к
x			х			x			x			Zinc, Total	ug/l as Zn	0	1	0	9	2		2	0	Ŀ	0		к
х												Sodium, Dissolved	mg/l as Na	8	0	2	3	5							
																	_				١		0	ĺ	к
X			X.			×	_	-	X	├	\vdash	Lead, Dissolved	ug/l as Pb	0	1	0	5	1	-		3	·	-	 	\dashv
Х			Х			X		L	х		<u> </u>	Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0	Ŀ	0	\dashv	к
x												Total Dissolved Solids	ppm	7	0	3	0	0		1	1	5		0	_
х			Х			Х			x			Color	pt-co	0	0	0	8	0		3	0		0		
П			х			X			х			рН	std. units	0	0	4	0	0			5		3	7	
Х																		5		1	5	3		0	
×	\dashv		X	-		X			X		_	Conductance, Specific	umhos/cm	0	0	0	9	٦			<u>J</u>	J		Ť	\exists
X			Х			X		_	X		_	Dissolved Oxygen	mg/l			-		_	<u> </u>	-				\dashv	\dashv
х												Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6						\dashv	
\dashv	-	\dashv		\dashv			\vdash				-													コ	
\dashv	_	_		\dashv				_	\vdash	-	_		+			\vdash			-	\dashv			\dashv	\dashv	\dashv
	- 1														<u> </u>										\Box

3.0 GAC TREATMENT SYSTEM MONITORING PROGRAM (DGW)

Groundwater samples from the GAC unit influent, mid-point, and effluent sampling ports were analyzed for TCE and its breakdown products (1,1-DCE, cis/trans 1,2-DCE, and vinyl chloride), total and dissolved iron, lead, and zinc, TDS, and TSS. The analytical results are summarized in Table 1, Section 3.

The April 2004 GAC monitoring results are summarized below:

- The GAC influent sample contained TCE at 5.9 μg/l. The mid-point and effluent samples did not contain TCE at concentrations exceeding the 0.50 μg/l laboratory reporting limit.
- 1,1-Dichloroethene, cis-1,2,-dichloroethene, trans-1,2-dichloroethene and vinyl chloride were not detected in the influent, mid-point or effluent samples at concentrations greater than their respective laboratory reporting limits.
- Lead concentrations in the unfiltered influent, mid-point and effluent samples were 4.7 μ g/l, 1.7 μ g/l and 5.5 μ g/l, respectively. Lead concentrations in the filtered samples were <1.3 μ g/l, <1.3 μ g/l and 3.4 μ g/l, respectively.
- Zinc concentrations in the unfiltered influent, mid-point and effluent samples were $254~\mu g/l$, $2970~\mu g/l$ and $343~\mu g/l$, respectively. Zinc concentrations in the filtered samples were $81.0~\mu g/l$, $36.4~\mu g/l$ and $263~\mu g/l$, respectively.
- Iron concentrations in the unfiltered influent, mid-point and effluent samples were 469 μ g/l, <39.2 μ g/l and <39.2 μ g/l, respectively. Iron concentrations in the filtered samples were <39.2 μ g/l in all three samples.

- TDS concentrations in the influent, mid-point and effluent samples were 68 mg/l, 70 mg/l and 70 mg/l, respectively.
- TSS concentration in the influent sample was 3,570 mg/l. TSS concentrations in the mid-point and effluent samples were both less than the laboratory reporting limit of 10 mg/l.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 3

GAC TREATMENT SYSTEM SAMPLING RESULTS, APRIL 2004

Sample ID	Permit	PO-GAC-INF	PO-GAC-MID	PO-GAC-EFF	Percent
Sample Date	Limits	4/8/2004	4/8/2004	4/8/2004	Removal
Volatile Organic Compounds (µg/l)					
Trichloroethene (TCE)	1.0	5.9	< 0.5	<0.5	√ 95.8% *
1,1-Dichloroethene	2.0	<0.5	/ <0.5	✓ <0.5	/ NA
cis-1,2-Dichloroethene	2.0	<0.5	·/ <0.5	√ <0.5	√ NA
trans-1,2-Dichloroethene	. 2.0	<0.5	/ <0.5	<0.5	√ NA
Vinyl chloride	5.0	<0.5	<0.5	<0.5	√ NA
Metals (μg/l)		,			
Iron (Unfiltered)	NL	469	<39.2	<39.2	/ NA
Iron (Filtered)	NL	<39.2	<39.2	<39.2	✓ NA
Lead (Unfiltered)	NL	4.7	✓ 1.7	5.5	✓ NA
Lead (Filtered)	NĽ	<1.3			√ · NA
Zinc (Unfiltered)	NL	254	✓ 29.0°	√ 343	√ NA
Zinc (Filtered)	NL	81.0	36:4	√ 263	√ NA
TDS (mg/l)	NL	68.0	✓ 70.0	√ 70.0	√ NA
TSS (mg/l)	NL	3,570	✓ <10.0	<10.0	/ NA

Notes:

μg/l - Micrograms per liter

NL - No limit

mg/l - Milligrams per liter

NA - Not applicable

Values in **bold** exceed the site specific Groundwater Quality Criteria of 1.0 $\mu g/l$ for TCE.

^{* -} Results less than the laboratory minimum detection limit were considered to be one half the minimum detection limit

4.0 DEPTH TO WATER, WATER LEVEL ELEVATIONS, AND TREATMENT SYSTEM FLOW MONITORING (DGW)

4.1 Depth to Water and Water Level Elevations

The April 27, 2004 depth to water and water level elevation data is summarized in Table 1, Section 4. Depths to water in the wells on the south and north sides of the plant that screen the same interval as the recovery wells were used to develop the water level elevation and groundwater flow map (Figure 1). As shown in Figure 1, the groundwater flow direction is to the northeast, which is consistent with previous measurements.

The depth to water measurements in the well points installed downgradient of the recovery wells were plotted to develop the water level elevation and groundwater flow direction maps shown in Figures 2 and 3.

4.2 Treatment System Flow Monitoring

In a letter to Lenox dated April 18, 2000, NJDEP requested that Lenox propose an "Average Daily Volume" (ADV) that would represent the minimum pumping volume required to adequately capture the TCE plume. The ADV would be calculated by dividing the total volume of groundwater extracted by the recovery system each month by the number of days in the month and would be reported quarterly to NJDEP. In a letter to NJDEP dated May 19, 2000, Lenox proposed an ADV of 268,000 gallons per day, which was based on the results of groundwater modeling and the empirical water level and groundwater chemistry data developed since the recovery system started in 1991.

During the period March 1 through March 31, 2004, the calculated ADV was 357,861 gallons per day. During the period April 1 through April 30, 2004, the calculated ADV was 356,163 gallons per day. During the period May 1 through May 31, 2004, the calculated ADV was 367,584 gallons per day.

- 6 -

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 4

WATER LEVEL MEASUREMENTS, APRIL 27, 2004

	Measuring Point		Water Level
	Elevation	Depth to Water	Elevation
Well No.	(ft. above mean sea level)	(ft. below MP)	(ft. above mean sea level)
P1	65.69	4.60	61.09
PIA	66.32	4.98 5.05	61.34 61.29
P1B P5	66.74	4.09	62.65
P5A	66.74	5.73	61.01
P8A	70.02	8.42	61.60
P8B	70.07	7.83	62.24
P9A	70.90	9.74	61.16
P9B	70.97	9,92	61.05
P9C	71.31	9.86	61.45
MW1	69.28	8.43	60.85
MW3	67.09	7.16	59.93
MW4	66.98	4.70	62.28
MW5	64.17	5.78	58.39
MW6	65.08	5.97	59.11 59.52
MW7	67.31	7.79 6.98	60.18
MW8 MW9	69.51	10.08	59.43
MWI0	63.51	4.55	58.96
MWII	63.05	5.28	57.77
MW12D	62.89	5.00	57.89
MW12S	62.62	4.70	57.92
MW13	64.66	6.28	58.38
MW14D	63.63	5.15	58.48
MW14S	63.64	5.13	58.51
MW15	66.07	6.69	59.38
MW16	62.07	<u>\</u> 4.52	57.55
MWI7	62.09	4.29	57.80 57.29
MW23 MW23A	61.49	4.60	57.18
MW24	62.60	5.23	57.37
MW25	61.13	3.97	57.16
MW25A	61.29	4.11	57.18
MW25B	61.22	4.03	57.19
MW26A (B30A)	62.48	5.45	57.03
MW26B (B30B)	61.65	4.67	56.98
MW72	64.19	4.62	59.57
MW73	63.06	2.97	60.09
MW74	62.56	3.80	58.76
MW75	60.15	3.51	56.64 56.44
MW76	60.60	4.16	56.26
MW77 MW78	59.84	3.21	56.63
MW79A	60.51	3.64	56.87
MW80	62.49	3.15	59.34
MW81	61.90	4.21	57.69
B31	62.19	5.26	56.93
B32	63.29	6.37	56.92
B53	62.31	4.26	58.05
B54	62.39	4.24	58.15
B59	60.02	3.05	56.97
B66	61.71	4.80	56.91
B66A	61:60	4.70	56.90 56.90
B66B	62.29	5.45	56.84
B67 B70A	61.39	4.12	57.27
B71	62.31	5.40	56.91
PZIS	60.27	3.59	56.68
ZID	60.52	4.14	56.38
PZ2S	60.52	3.85	56.67
PZ2D	60.70	4.22	56.48
PZ3S	61.47	4.75	56.72
PZ3D	61.60	4.88	56.72
PZ4S	60.80	4.07	56.73
PZ4D	61.09	4.41	56.68
PZ5S	60.47	3.58	56.89
PZ5D PZ6S	60.56 60.79	3.75	56.81 56.83

5.0 TCE MONITORING PROGRAM (MOA)

5.1 Background

A groundwater investigation performed at the Lenox China facility between January 1987 and February 1990 by Geraghty & Miller (G&M) identified two TCE plumes emanating from an antecedent drum storage pad and degreaser sump. Both antecedent waste handling areas are no longer in use. A second on-site degreaser sump was removed from service in June 1993. Lenox initiated a quarterly groundwater monitoring program to delineate and track the TCE plumes identified by G&M. The monitoring results were also used to design the GWCAS.

5.2 Field Procedures

Groundwater samples were collected from twenty-two monitoring wells at the Lenox facility and along White Horse Pike on April 27-29, 2004. All sampling was performed in accordance with the most recently revised (April 1996) GWSAP and SGWSAP approved by the NJDEP.

Each well used to monitor the TCE remediation system contains a three-quarter-inch inner-diameter pump column attached to a one-foot section of well screen. The bottom of the pump column screen is set approximately two feet above the top of the well screen to ensure that the total volume of standing water in the well casing is removed during purging. To purge the wells, a peristaltic pump was attached to the top of the pump column using drinking-water grade polyethylene tubing. Three to five times the volume of standing water in each well was removed and field parameters (pH, specific conductivity, temperature and dissolved oxygen) were monitored during purging. The field parameter data is provided on the well sampling logs in Appendix A. Samples for metals analysis were collected directly from the discharge of the peristaltic pump. A new section of tubing was used for each well to avoid cross-contamination. Samples for VOC analysis were collected with 60 cc Teflon bailers dedicated to each well.

Unfiltered samples were analyzed for VOCs, iron, zinc, lead, TDS and TSS. Filtered samples were analyzed for iron, zinc and lead. Field blank and duplicate samples collected during the

monitoring program and a trip blank supplied by the laboratory were analyzed for quality assurance purposes. All analyses were performed by Accutest Laboratories, located in Dayton, New Jersey (NJDEP certification No. 12129).

5.3 Groundwater Monitoring Results

The groundwater analytical data is summarized in Tables 1, 2, 3 and 4, Section 5. The extent of TCE in groundwater during the April 2004 monitoring round is shown on Figure 4. The laboratory data reports are provided in Appendix C, which is bound separately.

The April 2004 monitoring results are summarized below:

- For wells sampled on a quarterly basis, TCE concentrations increased in wells MW-10, MW-25, B-59, MW-76 and MW-81 since the last monitoring round. The largest increase occurred in well MW-10 (3.0 μg/l in January 2004 to 3.9 μg/l in April 2004).
- For wells sampled on an annual basis, TCE concentrations increased in wells MW-12D, MW-23, B-32, B-54 and B-71. The largest increase occurred in well B-54 (75.4 μg/l in April 2003 to 117 μg/l in April 2004).
- For wells sampled on a quarterly basis, TCE concentrations decreased in wells MW-12S, MW-15, B-31, MW-77, MW-78 and MW-79A since the last monitoring round. The largest decrease occurred in well B-31 (10.0 μg/l in January 2004 to 8.5 μg/l in April 2004).
- For wells sampled on an annual basis, TCE concentrations decreased in wells B-53 and B-66. The largest decrease occurred in well B-66 (37.7 μg/l in April 2003 to 6.3 μg/l in April 2004).
- TCE concentrations remained effectively unchanged at less than the laboratory reporting limit in wells MW-1, MW-13, MW-75 and MW-80.

- Cis-1,2-dichloroethene was detected in the samples from wells MW-10, MW-12D, B-31, B-32, B-54, MW-77 and MW-79A at concentrations ranging from 0.26 J μg/l in MW-10 to 3.0 μg/l in MW-79A. Trans-1,2-dichloroethene was detected in the sample from well MW-79A at a concentration of 0.65 J μg/l. No other TCE breakdown products were detected above laboratory reporting limits in any wells.
- Iron was detected above the laboratory reporting limit of 100 μg/l in the unfiltered samples from wells MW-1, MW-10, MW-15, MW-23, B-71 and MW-78 at concentrations ranging from 101 μg/l (MW-15) to 691 μg/l (MW-1). Iron was not detected above the laboratory reporting limit of 100 μg/l in any filtered sample.
- Lead was not detected above the laboratory reporting limit of 3.0 μg/l in any of the unfiltered or filtered samples.
- Zinc was detected above the laboratory reporting limit of 20 μg/l in the unfiltered samples from wells MW-15, MW-23, MW-25, B-31 and B-71 at concentrations ranging from 28.0 μg/l (B-71) to 107 μg/l (MW-25). Zinc was detected above the laboratory reporting limit of 20 μg/l in the filtered samples from wells MW-15, MW-23, MW-25 and B-31 at concentrations ranging from 40.0 μg/l (MW-23) to 111 μg/l (MW-25).
- TDS concentrations ranged from less than the 10 mg/l laboratory reporting limit (MW-75) to 418 mg/l (MW-12D). TSS concentrations were at or below the laboratory reporting limit of 4.0 mg/l in all samples except MW-10 (5.0 mg/l), B-53 (15.0 mg/l), B-71 (20.0 mg/l) and MW-78 (9.0 mg/l).
- There was fair agreement between analyte concentrations in the field and duplicate samples (MW-85) from well MW-75.

- TCE, iron, lead, zinc, TDS and TSS were not detected in the field blank samples at concentrations exceeding their respective laboratory reporting limits. No VOCs were detected in the trip blank at concentrations exceeding laboratory reporting limits.
- Chloroform was detected in the samples from a number of wells, at concentrations ranging from 0.49 J µg/l (MW-25) to 3.3 µg/l (MW-79A). Chloroform was not detected in the field or trip blanks and is not considered a site-related compound.

The monitoring data indicates that since the last monitoring round, TCE concentrations in samples from the sentinel wells along White Horse Pike increased slightly in MW-76, decreased in wells MW-77, MW-78 and MW-79A, and remained the same in well MW-75 at less than the laboratory reporting limit. The greatest change in concentration occurred at well MW-79A, which decreased from 5.4 µg/l in January 2004 to 5.2 µg/l in April 2004.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 5

SUMMARY OF TCE CONCENTRATIONS IN GROUNDWATER (OCTOBER 2001-APRIL 2004)

W2-11	1 20 20 2002					
Well	January 29-30, 2003	April 14-16, 2003	July 22-24, 2003	October 28-30, 2003	Jan. 21-22, 2004	Apr. 27-29, 2004
		,				
MW1	<0.15	<0.19	<0.19	<0.19	<0.19	<0.19
MW10	3.9	<0.19	<0.19	5.8	3.0	3.9
MW12S	1.6	<0.19	<0.19	1.3	1.3	1.1
MW12D	-	; <0.19	-	-	-	5.4
MW13	<0.15	<0.19	<0.19	<0.19	<0.19	<0.19
MW15 .	2.2	1.3	<0.19	0.67 J	· 0.96 J	. 0.69 J
MW23	-	<0.19	-	-1	-	8.9
MW25	.2.5	1.5	1.1	0.86 J	<0.19	0.39 J
B31 (MW27)	24.4	26.1	15.7	10.7	10.0	8.5
B32 (MW28)	-	3.4	-	-	-	8.5
B53	-	10.3	-	.		. 6.7
B54	-	75.4	-	-	-	117
B59	0.62 J	0.71 J	0.96 J	<0.19	<0.19	0.46 1
B66	-	37.7	-	-	-	6.3
B71	, -	1.2	-	-	-	2.8
MW75	<0.15/<0.15	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19
MW76	0.39 J	<0.19	<0.19	<0.19	<0.19	0.30,1
MW77	2.3	. 1.9	0.67 J	1.7	1.4	1.3
MW78	1.7	. 1.8	1.1	1.4	1.3	1.2
MW79A	6.4	3.8	<0.19	6.0	5.4	5.2
MW80 .	<0.15	<0.19	<0.19	<0.19	<0.19	<0.19
MW81	0.50 J	<0.19	<0.19	<0.19	<0.19	0.27
GAC Influent	5.6	9.91	20.22	7.6	4.5	5.9
GAC Effluent	<0.26	<0.26	<0.26	<0.5	<0.5	<0
GAC Mid-Vessel	<0.26	0.37	<0.26	! I	<0.5	<0.5

Notes:

All samples analyzed by USEPA Method 624, 601 or 502.2/524.2.

All concentrations are presented in micrograms per liter (ug/l).

- = Not analyzed J = Estimated concentration

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

Table 1, Section 5 Continued...

Well	October 16-17, 2001	January 21-23, 2002	April 8-10, 2002	May 1, 2002	July 17-19, 2002	October 15-17, 2002
MWI	<0.30	. <0.30	<0.30		<0.15	<0.15
MW10 .	9.6/8.8	2.6/2.7	8.6/8.5	, _	6.4	6.8
MW12S	1.4	1.4	1.4	-	1.8	1.7
MW12D	-	-	6.0	<u>-</u>	_	
MW13	<0.30	[;] <0.30	<0.30	· _	<0.15	<0.15
MW15	0.83	. 1.3	1.9	-	1.3	0.59
MW23	-	-	61.7	`-	-	•
MW25	14.0	9.0	6.4	-	4.1	3.4
B31 (MW27)	13.0	11.1	. 10.8	-	1.8	6.6
B32 (MW28)	-	-	13.7	-	-	
B53	-	-	6.2		-	
B54	-	· .	87.4	-	-	
B59	1.3	1.3	0.90	-	0.60	<0.15
B66	-	-	41.0	· -		•
B70A		-	<0.30		· -	
B71	-	-	0.47	-	-	
MW75	<0.30	<0.30/<0.30	<0.30/<0.30	<0.30	<0.15/<0.15	<0.15/<0.15
MW76	0.42	<0.30	0.45	0.41	<0.15	<0.1:
MW77	2.8	2.5	2.3	2.2	2.5	1.9
MW78	1.2	1.4	1.3	1.2	1.6	1.0
MW79Å	3.1	3.8	3.8	4.3	6.0	3.7
MW80	<0.30	<0.30	<0.30	-	<0.15	<0.1:
MW81	0.38	0.48	0.47	-	0.62	0:53
GAC Influent	15.0	11.0	11.0	-	. 8.7	7.0
GAC Effluent	<0.49	<0.49	<0.26	-	<0.26	<0.26
GAC Mid-Vessel	<0.49	<0.49	<0.26	-	1.0	<0.20

Notes:

All samples analyzed by USEPA Method 624, 601 or 502.2/524.2.

All concentrations are presented in micrograms per liter (ug/l).

-= Not analyzed J = Estimated concentration

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 2 SECTION 5

TCE AND ASSOCIATED BREAKDOWN PRODUCT CONCENTRATIONS, APRIL 27-29, 2004

					
Well	TCE	cis-DCE	trans-DCE	1,1 DCE	Vinyl Chloride
MW-1	<0.19	<0.20 /	<0.53 🗸	<0.43	<0.67 🗸
MW-10	3.9 🗸	(0.26 J.Y	<0.53 🗸	<0.43	<0.67 🗸
MW-12S	1.1 🗸	<0.20 ✓	<0.53 ✓	<0.43	<0.67 🗸
MW-12D	5.4 ✓	0:63⁻J:✓	<0.53 <	<0.43	<0.67 ✓
MW-13	<0.19 🗸	<0.20	<0.53 🗸	<0.43 🗸	<0.67 🗸
MW-15	0.69 J	<0.20 ✓	<0.53 ✓	<0.43 ~	<0.67 ✓
MW-23	8.9.	<0.20 🗸	<0.53	<0.43	<0.67 🗸
MW-25	0.39 JV	<0.20 ✓	<0.53	<0.43	<0.67 ∨
B-31	8.5 √	0.44 J 🗸	<0.53 ✓	<0.43	<0.67
B-32	8.5 🗸	0.591	<0.53 🗸	<0.43	<0.67
B-53	6.7 🗸	<0.20 ✓	<0.53 v	<0.43	<0.67 ✓
B-54	117 🗸	0.65 J ✓	<0.53 🗸	<0.43	<0.67 ✓
B-59	0.46 J 1/	<0.20 ✓	<0.53 .	<0.43	<0.67
B-66	6.3 🗸	<0.20 🗸	<0.53	<0.43	<0.67 ✓
B-71	2.8	<0.20 ✓	<0.53 🗸	<0.43 ✓	<0.67 🗸
MW-75	<0.19 🗸	<0.20 🗸	<0.53	<0.43 ✓	<0.67 🗸
MW-85 (Dup MW-75)	<0.19 🗸	<0.20 √	<0.53 🗸	<0.43 🗸	<0.67
MW-76	%0.30″J@✓	<0.20 🗸	<0.53 🗸	<0.43	<0.67 <
MW-77	1.3 ✓	1.1	<0.53 🗸	<0.43 🗸	<0.67 🗸
MW-78	1.2	<0.20 ✓	<0.53 🗸	<0.43	<0.67
MW-79A	5.2 🗸	3.04	0:65-J;	<0.43 🗸	<0.67 ✓
MW-80	<0.19	<0.20 ✓	<0.53	<0.43	<0.67
MW-81	0.27 J 🗸	<0.20 ✓	<0.53 ✓	<0.43	<0.67

Notes

All concentrations are presented in micrograms per liter (µg/l).

J = Estimated concentration.

Values in **bold** exceed the site specific Groundwater Quality Criteria for TCE (1.0 µg/l).

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 3 SECTION 5

INORGANIC ANALYTE CONCENTRATIONS, APRIL 27-29, 2004

Well No.	MW-1	MW-10	MW-12S	MW-12D	MW-13	MW-15	MW-23	MW-25	B-31	B-32	B-53	B-54
Metals (μg/l)							·					
Iron (Unfiltered)	69 l ₂	246	<100	√ <100	<100	101	123	<100	<100	<100	<100	<100
Iron (Filtered)	<100	<100	<100	<100	<100	<100	<100	<100	√ <100	<100	× <100	<100
Lead (Unfiltered)	<3.0	<3.0	✓ <3.0	<3.0	<3.0	<3.0	<3.0	✓ <3.0	<3.0	<3.0	<3.0	<3.0
Lead (Filtered)	<3.0	<3.0	<3.0	× <3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	× 3.0
Zinc (Unfiltered)	<20	<20	<20	√ <20	<20	/ 48.7	38.3	107	69.9	<20	<20	<20
Zinc (Filtered)	- <20	√ <20	<20	√ <20	<20	/ 49.3	40.0	V 111	✓ 73.0	<20	<20	<20
TDS (mg/l)	66	/ 115	103	√ 418	/ 120	135	121	71	103	152	35	73
TSS (mg/l)	<4.0	√ 5.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	4.0	15.0	<4.0

Notes:

 μ g/l = Micrograms per liter.

mg/l = Milligrams per liter.

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) or Zinc (36.7 µg/l).

Table 3, Section 5 Continued ...

Well No.	B-59	B-66	€B-71 (-1-1)	MW-75	MW-85*	MW-76	MW-77	MW-78	MW-79A	MW-80	MW-81
Metals (μg/l)	!									ļ	
lron (Unfiltered)	<100	√ <100	√ 276	√ <100	<100	√ <100	<100	✓ 358	<100	<100	<100
Iron (Filtered)	<100	√ <100	v <100	<100	<100	√ <100	<100	<100	<100	<100	<100
Lead (Unfiltered)	<3.0	/ <3.0	37.0	⋄ ∕ <3.0	<3.0	√ <3.0	<3.0	<3.0	<3.0	<3.0	✓ <3.0 ✓
Lead (Filtered)	<3.0	√ <3.0	√ <3.0	<3.0	v <3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Zinc (Unfiltered)	<20	<20	28.0	<20	<20	/ <20	/ <20	<20	<20	<20	<20
Zinc (Filtered)	<20	× <20			<20	<20	√ <20	· <20	<20	<20	<20
TDS (mg/l)	55	i/ 49	14	<10	23	√ 98	16	j	84	4 67	40
TSS (mg/l)	<4.0	· <4.(20.0	√ <4.0	√ <4.0	<4.0) / <4.(9.0	<4.0	0 <4.0	<4.0

Notes:

 μ g/l = Micrograms per liter.

mg/l = Milligrams per liter.

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) or Zinc (36.7 µg/l).

^{*} MW-85 is duplicate of MW-75.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 4 SECTION 5

QUALITY ASSURANCE/QUALITY CONTROL SAMPLES, APRIL 27-29, 2004

Sample ID Sample Matrix Date	FB-1 Field Blank 4/27/2004	FB-2 Field Blank 4/28/2004	FB Field Blank 4/29/2004	TB Trip Blank
Trichloroethene	<0.19	<0.19	✓ <0.19	<0.19
Iron (Unfiltered)	<100	· <100	<100 < 100	NA
Iron (Filtered)	<100	<100	<100	NA
Lead (Unfiltered)	<3.0	<3.0	<3.0	/ NA
Lead (Filtered)	<3.0	<3.0	<3.0	v NA
Zinc (Unfiltered)	<20	√ <20	√ <20	√ NA
Zinc (Filtered)	<20	<20	√ <20	NA
TDS (mg/l)	<10	<10	<10	NA NA
TSS (mg/l)	<4.0	✓ <4.0	✓. <4.0) / NA

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$), unless otherwise noted. mg/l = Milligrams per liter.

NA = Not Analyzed

6.0 SOLID WASTE MANAGEMENT UNIT NO. 2 AND AREA OF CONCERN GROUNDWATER MONITORING PROGRAM (MOA)

The groundwater sampling data from monitoring wells MW-10, MW-17, MW-72, MW-73 and MW-74 are used to assess groundwater quality downgradient of Solid Waste Management Unit (SWMU) No. 2 and the Area of Concern (AOC). Unfiltered and filtered samples from these wells were analyzed for lead and zinc. The groundwater analytical data is summarized in Table 1, Section 6. The laboratory data reports are included in Appendix C.

The April 2004 monitoring results are summarized below:

- Lead was detected in the unfiltered samples from wells MW-72 (17.6 μg/l), MW-73 (42.6 μg/l) and MW-74 (7.2 μg/l) at concentrations exceeding the laboratory reporting limit of 3.0 μg/l. Lead was detected in the filtered sample from well MW-73 (9.2 μg/l) at a concentration exceeding the laboratory reporting limit of 3.0 μg/l.
- Zinc was detected in the unfiltered samples from wells MW-17 (105 μg/l), MW-72 (21.8 μg/l), MW-73 (53.4 μg/l) and MW-74 (48.1 μg/l) at concentrations exceeding the laboratory reporting limit of 20 μg/l. Zinc was detected in the filtered samples from wells MW-17 (123 μg/l), MW-73 (34.9 μg/l) and MW-74 (40.3 μg/l) at concentrations exceeding the laboratory reporting limit of 20 μg/l.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 1 SECTION 6

SWMU NO. 2 AND AOC GROUNDWATER MONITORING RESULTS, APRIL 28-29, 2004

Well No.	MW-10	MW-10 MW-17		MW-73	MW-74
Lead (Unfiltered)	<3.0	<3.0	✓ 17.6	42.6	7.2
Lead (Filtered)	<3.0	<3.0	<3.0	v' :9:2	<3.0
Zinc (Unfiltered)	<20	105	√ <u>≅2</u> 1.8	53.4	48.1
Zinc (Filtered)	<20	. 123	× <20	√ <u>£34:9</u>	40.3

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$).

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 μ g/l) and Zinc (36.7 μ g/l).

7.0 CLASSIFICATION EXCEPTION AREA/ STATISTICAL ANALYSIS PROGRAM (MOA)

The groundwater sampling data from MW-1, MW-3F, MW-6F, MW-12S, MW-13, MW-73, MW-74, MW-75 and MW-79A is used to assess groundwater quality downgradient of the Lenox facility. Unfiltered and filtered samples from these wells were analyzed for lead and zinc. The groundwater analytical results are summarized in Table 1, Section 7. The laboratory data reports are included in Appendix C.

The April 2004 results for the Classification Exception Area (CEA) monitoring program are summarized below:

- Lead concentrations in the unfiltered samples ranged from less than the laboratory reporting limit of 3.0 μg/l to 42.6 μg/l (MW-73). Lead concentrations in the filtered samples ranged from less than the laboratory reporting limit of 3.0 μg/l to 9.2 μg/l (MW-73).
- Zinc concentrations in the unfiltered samples ranged from less than the laboratory reporting limit of 20 μg/l to 53.4 μg/l (MW-73). Zinc concentrations in the filtered samples ranged from less than the laboratory reporting limit of 20 μg/l to 40.3 μg/l (MW-74).
- FCE concentrations in all monitoring wells, as summarized in Table 1, Section 5, ranged from less than the laboratory reporting limit of 0.19 μg/l to 117 μg/l, with the highest concentration in the sample from well B-54. TCE concentrations in the sentinel wells along the White Horse Pike ranged from less than the 0.19 μg/l laboratory reporting limit in well MW-75 to 5.2 μg/l in well MW-79Å.

In accordance with the CEA monitoring program, the sentinel well TCE monitoring data collected during the past eight consecutive quarters was statistically analyzed using the Mann-Whitney U-Test. The results are summarized in Table 2, Section 7. The null hypothesis was accepted at the 90 percent confidence level (U>3) for wells MW-75, MW-76, MW-78 and MW-

79A indicating that TCE concentrations at these wells have statistically remained the same or increased over the past eight monitoring periods. MW-75 has not contained any detectable concentrations of TCE for the past nineteen consecutive quarters. The null hypothesis was rejected (U=/<3) for well MW-77, indicating that the TCE concentration at this well has statistically decreased over the past eight monitoring periods.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 1 SECTION 7

CEA GROUNDWATER MONITORING RESULTS, APRIL 28-29, 2004

Well No.	MW-1	MW-3F	MW-6F	MW-12S	MW-13
Lead (Unfiltered)	<3.0	<3.0	<3.0	<3.0	<3.0
Lead (Filtered)	<3.0	/ 37	<3.0	<3.0	<3.0
Zinc (Unfiltered)	<20 v	<20	√ <20	<20	<20
Zinc (Filtered)	<20 v	<20	✓ <20	√ <20	√ <20

Well No.	MW-73	MW-74		MW-75		MW-79A	
Lead (Unfiltered)	42.6	1	17:2	/	<3.0	V	<3.0
Lead (Filtered)	9.2	N.	<3.0	/	<3.0	1	<3.0
Zinc (Unfiltered)	53.4	1	48.1	√^	<20	1	<20
Zinc (Filtered)	¥3 4 19	V	40.3	1	<20	'	<20

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$).

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 μ g/l) and Zinc (36.7 μ g/l).

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 2 SECTION 7

MANN-WHITNEY STATISTICAL TEST SUMMARY

	Eighth Quarter Ending Date								
		Jan-04		Apr-04					
Sentinel Well	Ua	Ub	U	Ua	Ub	U			
MW-75	. 16	0	8	16	0	8			
MW-76	8	0	4	12	3	7.5			
MW-77	1	. 0	0.5 .	0		0			
MW-78	9	8	8.5	4	_	4			
MW-79A	7	. 5	6	7	6	6.5			

Notes:

Null hypothesis will be accepted at the 90% confidence level when the calculated U value is greater than 3.

If two or more concentrations are identical the test is calculated twice, once ranking the identical "a" concentrations first (Ua) and once ranking the "b" concentrations first (Ub). The average of these values is the actual "U". (N.J.A.C. 7:26 E App. C)

8.0 RESIDENTIAL WELL SAMPLING

Following discussions with NJDEP and USEPA in 2001, Lenox agreed to develop and coordinate a sampling program with the Atlantic County Health Services (ACDPH) to assess and track TCE and breakdown product concentrations at residential wells located downgradient of the White Horse Pike (Route 30). Lenox initiated the sampling during the fourth quarter of 2001 at the first three homes immediately downgradient of the White Horse Pike that are not served by public water. A fourth residence was added in January 2003 and is included in the list below. In accordance with the plan developed by Lenox, the sampling results are provided to ACDPH, which in turn provides any significant data directly to the homeowners and the USEPA.

The residences covered by the current quarterly sampling program are shown on Figure 5 and are identified as follows:

- RESW-1, 360 S. Mannheim Avenue
- RESW-2, 357 S. Mannheim Avenue
- RESW-3, 353 S. Mannheim Avenue
- RESW-4, 344 S. Mannheim Avenue

Private wells at homes further north and west of Mannheim Avenue are not included in the sampling program due to their distance from White Horse Pike. The wells were sampled on April 28, 2004. Please note that RESW-3 was not sampled during this round. The property was recently sold and ACDPH had not yet informed the new owner of the monitoring program when the sampling event took place.

The current and historical sampling data is summarized in Tables 1 and 2, Section 8. Laboratory data reports are included in Appendix C. The second quarter monitoring results are summarized below:

TCE was detected at a concentration above the laboratory reporting limit of 0.50 μg/l in RESW-1 (0:65 μg/l). TCE was not detected in the other two samples. TCE breakdown

products were not detected in any sample at concentrations exceeding the laboratory reporting limits.

- Chloroform was detected in two samples at concentrations of 7.2 µg/l (RESW-1) and 0.52 J µg/l (RESW-2). Chloroform is not considered a site-related compound.
- Methyl tert-butyl ether (MTBE) was detected in the sample from RESW-4 at a concentration of 2.3 μg/l. MTBE is not considered a site-related compound.
- Benzene and carbon disulfide were detected in the sample from RESW-2 at concentrations of $0.55~\mu g/l$ and $1.2~\mu g/l$, respectively. Neither of these compounds are considered to be site-related compounds.

The RESW-1 residence was connected to the municipal water supply system on August 20, 2002.

LENOX CHINA POMONA, NEW JERSEY

TABLE 1 SECTION 8

RESIDENTIAL WELL SAMPLING RESULTS, APRIL 28, 2004

Well ID	RESW-1	RESW:2	RESW-4
Acetone		-	-
2-Butanone		- ,]	-
Benzene	1 - 1	0.55	
Bromobenzene	-	-	-
Bromochloromethane	- '	-	-
Bromodichloromethane		- 1	-
Bromoform	- 1	- 1	-
Bromomethane	- 1	-	-
n-Butylbenzene	-	-	-
sec-Butylbenzene	-		
tert-Butylbenzene	-	21/2/	-
Carbon disulfide	-	چ <u>کیران</u>	-
Chlorobenzene Chloroethane	-	_ [-
Chloroform	421	10:524	_
Chloromethane	1,7,74:	0.52.0	-
o-Chlorotoluene	_	_	_
p-Chlorotoluene	_	- 1	-
Carbon tetrachloride	1 - 1	-	-
1,1-Dichloroethane	-	- '	
1,1-Dichloroethene] - [- '	-
1,1-Dichloropropene	-	-	<i>:</i>
1,2-Dibromo-3-chloropropane	-	-	- 1
1,2-Dibromoethane	-	-	-
1,2-Dichloroethane	-	-	-
1,2-Dichloropropane	-	-	-
1,3,-Dichloropropane	-	-	-
2,2-Dichloropropane	-	-	-
Dibromochloromethane	-	-	-
Dibromomethane	-	-	-
Dichlorodifluoromethane	_	_	-
Cis-1,3-Dichloropropene m-Dichlorobenzene		_	-
o-Dichlorobenzene		_	_
p-Dichlorobenzene		_	_
Trans-1,2-Dichloroethene	_	-	
Cis-1,2,-Dichloroethene	_	, -	-
Trans-1,3-Dichloropropene	i -	-	-
Ethylbenzene	-	-	-
Hexachlorobutadiene	-	· -	-
Hexane	-	-	-
2-Hexanone	- '	-	-
Isopropylbenzene	-	-	-
p-Isopropylbenzene	-	-	-
Methylene Chloride	- 1	-	€2.3%
Methyl Tert Butyl Ether	-	-	1.2.3°V
4-Methyl-2-Pentanone	-	-	-
Naphthalene	_		-
n-Propylbenzene			-
Styrene 1,1,1,2-Tetrachloroethane			_
1,1,1-Trichloroethane	1 :		_
1,1,2,2-Tetrachloroethane	<u> </u>	_	-
1,1,2-Trichloroethane	-	_	-
1,2,3-Trichlorobenzene	-	-	-
1,2,3-Trichloropropane	-	-	-
1,2,4-Trichlorobenzene	-	-	-
1,2,4-Trimethylbenzene	-	-	
1,3,5-Trimethylbenzene	-	-	-
Toluène	- /	-	-
Trichloroethene	(0.65)		-
Trichlorofluoromethane	-	-	-
Vinyl Chloride	-	-	-
Xylenes, total	<u> </u>		
Notes:			

All concentrations presented in micrograms per liter (ug/l).

- = Parameter not detected above laboratory detection limit.

LENOX CHINA POMONA, NEW JERSEY

TABLE 2 SECTION 8

HISTORICAL RESIDENTIAL WELL SAMPLING RESULTS AS OF APRIL 2004 (DETECTED COMPOUNDS ONLY)

Sample ID	Date	Benzene	Chloroform	Chlorobenzene	m-Dichloro benzene	p-Dichloro benzene	МТВЕ	Trichloroethene	Carbon Disulfide
RESW-1	3/19/2002	-	5.0	-	-	-	-	1.4	-
	5/16/2002	-	3.6	-	-	-	-	1.5	-
	7/18/2002	- '	4.1			-	-	1.2	-
	10/16/2002		4.2	-	-	-	0.29	0.88	-
	1/29/2003	- `	6.6	-	-	-	-	- '	-
	4/14/2003	- '	4.9		-	-	-	0.56	-
	7/23/2003	- '	5.5	-	-	-	- '	1.1	-
	10/30/2003	-	7.9	-	-	-	-	0.53	-
	1/21/2004	- 1	6.5	-	-	-	-	0.54	-
	4/28/2004	-	7.2	-		-		0.65	-
RESW-2	3/19/2002	1.3	0.72	-	-	0.26	-	-	-
	5/16/2002	0.88	0.51	-	-	0.33	-	- '	-
	7/18/2002	0.96	0:38	-	-	0.38	-	-	-
[10/16/2002	1.4	0.29		0.071	0.33	-	-	-
	1/29/2003	1.4	0.25 J	-	-	0.26 J	-	-	-
	4/14/2003	1.4	0.28 J	0.098 J	0.10 J	0.52	-	-	-
	7/23/2003	0.78	-	-	-	-	-	-	-
	10/30/2003	0.52	0.68	-	-	0.31 J	-	-	-
	1/21/2004	0.60	0.49 J	-	-	-	-	-	-
	4/28/2004	0.55	0.52	-	<u> </u>	<u>-</u> .	-		1.2
RESW-3	3/19/2002	-	3.1	-	-	-	-	-	-
.	6/4/2002	-	2:.7	-	-	-	-	-	-
	7/18/2002	-	2.6	-	-	-	-	-	-
	10/16/2002	-	2.4	-	-	-	-	-	-
İ	1/29/2003	NS	NS	NS	NS	NS	NS	NS .	NS
	4/16/2003	- 1	2.4	- 1	-	-	-	-	-
	7/23/2003	- 1	2.9	-	-	-		-	-
	10/30/2003	NS	NS	NS	NS	NS	NS	NS	NS
	1/21/2004	NS	NS	NS	NS	NS	NS	NS	NS
	4/28/2004	NS	NS	NS	NS	NS	NS_	NS	NS
RESW-4	1/29/2003	-	0.29 J	-	-	-	1.3	- }	- [
. [4/14/2003	-	0.22 J	-		-	1.3	- 1	-
	7/23/2003	-	-	-	-	-	1.7	-	•
	10/30/2003	-	-	-	-	-	2.3	-	-
	1/21/2004	-	-	-	-	· •	1.8	-	-
	4/28/2004			-	<u></u>	<u> </u>	2.3	<u> </u>	

Notes:

All concentrations presented in micrograms per liter (ug/l).

- = Not detected above laboratory detection limit.

J = Estimated concentration. NS = Not sampled.

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).